IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v132y2014icp69-78.html
   My bibliography  Save this article

Simulating soil water regime in lowland paddy fields under different water managements using HYDRUS-1D

Author

Listed:
  • Tan, Xuezhi
  • Shao, Dongguo
  • Liu, Huanhuan

Abstract

The widely adopted alternate wetting and drying (AWD) irrigation for rice production in lowland paddy fields with shallow groundwater table is increasingly needed to quantify the soil water regime for irrigation schedule design. Field experiments were conducted to compare the soil water flow between paddy fields under AWD and continuously flooded irrigation (CFI), during the rice growing season in 2010–2011. Model simulations using HYDRUS-1D were also conducted based on the measured pressure head distribution of soil profiles. Modeling results show that the pressure head derived from forward simulation using the point estimated soil hydraulic parameters did not agree well with the measured pressure head. However, from inverse modeling of saturated hydraulic conductivities of plow pan (mean of 0.68cmd−1 in AWD plots and 0.54cmd−1 in CFI plots), the HYDRUS-1D model can properly simulate the water flow in multi-layer paddy soil flow, where the plow pan plays an important role in determining the vertical pressure head distribution. The measured pressure head and simulated pressure head derived from inverse modeling agreed well (NSE of 0.93–0.98) during the whole rice growing season. Measurement and simulation results indicated that the practice of AWD decreased the percolation 38.2–40.3% in 2010 and 23.3–27.2% in 2011, compared to that of CFI. It is also found that groundwater capillary rise amounted to 26.1–27.4% in AWD plots, and 10.2–18.1% in CFI plots of respective water input (irrigation and rainfall).

Suggested Citation

  • Tan, Xuezhi & Shao, Dongguo & Liu, Huanhuan, 2014. "Simulating soil water regime in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 132(C), pages 69-78.
  • Handle: RePEc:eee:agiwat:v:132:y:2014:i:c:p:69-78
    DOI: 10.1016/j.agwat.2013.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413002795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouman, B. A.M. & Feng, Liping & Tuong, T.P. & Lu, Guoan & Wang, Huaqi & Feng, Yuehua, 2007. "Exploring options to grow rice using less water in northern China using a modelling approach: II. Quantifying yield, water balance components, and water productivity," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 23-33, March.
    2. Wopereis, M. C. S. & Bouman, B. A. M. & Kropff, M. J. & ten Berge, H. F. M. & Maligaya, A. R., 1994. "Water use efficiency of flooded rice fields I. Validation of the soil-water balance model SAWAH," Agricultural Water Management, Elsevier, vol. 26(4), pages 277-289, December.
    3. Feng, Liping & Bouman, B. A.M. & Tuong, T.P. & Cabangon, R.J. & Li, Yalong & Lu, Guoan & Feng, Yuehua, 2007. "Exploring options to grow rice using less water in northern China using a modelling approach: I. Field experiments and model evaluation," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 1-13, March.
    4. Garg, Kaushal K. & Das, Bhabani S. & Safeeq, Mohammad & Bhadoria, Pratap B.S., 2009. "Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport," Agricultural Water Management, Elsevier, vol. 96(12), pages 1705-1714, December.
    5. Belder, P. & Bouman, B. A.M. & Spiertz, J.H.J., 2007. "Exploring options for water savings in lowland rice using a modelling approach," Agricultural Systems, Elsevier, vol. 92(1-3), pages 91-114, January.
    6. Belder, P. & Bouman, B. A. M. & Cabangon, R. & Guoan, Lu & Quilang, E. J. P. & Yuanhua, Li & Spiertz, J. H. J. & Tuong, T. P., 2004. "Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia," Agricultural Water Management, Elsevier, vol. 65(3), pages 193-210, March.
    7. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    8. Li, Y. H., 2001. "Research and practice of water saving irrigation for rice in China," Conference Papers h027868, International Water Management Institute.
    9. Mishra, H. S. & Rathore, T. R. & Pant, R. C., 1990. "Effect of intermittent irrigation on groundwater table contribution, irrigation requirement and yield of rice in Mollisols of the Tarai region," Agricultural Water Management, Elsevier, vol. 18(3), pages 231-241, September.
    10. Boling, A.A. & Bouman, B. A.M. & Tuong, T.P. & Murty, M.V.R. & Jatmiko, S.Y., 2007. "Modelling the effect of groundwater depth on yield-increasing interventions in rainfed lowland rice in Central Java, Indonesia," Agricultural Systems, Elsevier, vol. 92(1-3), pages 115-139, January.
    11. Wang, Huanyuan & Ju, Xiaotang & Wei, Yongping & Li, Baoguo & Zhao, Lulu & Hu, Kelin, 2010. "Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain," Agricultural Water Management, Elsevier, vol. 97(10), pages 1646-1654, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Baoli & Shao, Dongguo & Fang, Longzhang & Yang, Xia & Chen, Shu & Gu, Wenquan, 2019. "Modelling percolation and lateral seepage in a paddy field-bund landscape with a shallow groundwater table," Agricultural Water Management, Elsevier, vol. 214(C), pages 87-96.
    2. Tan, Xuezhi & Shao, Dongguo & Gu, Wenquan & Liu, Huanhuan, 2015. "Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 150(C), pages 67-80.
    3. Darzi-Naftchali, Abdullah & Karandish, Fatemeh & Šimůnek, Jiří, 2018. "Numerical modeling of soil water dynamics in subsurface drained paddies with midseason drainage or alternate wetting and drying management," Agricultural Water Management, Elsevier, vol. 197(C), pages 67-78.
    4. Ishfaq, Muhammad & Farooq, Muhammad & Zulfiqar, Usman & Hussain, Saddam & Akbar, Nadeem & Nawaz, Ahmad & Anjum, Shakeel Ahmad, 2020. "Alternate wetting and drying: A water-saving and ecofriendly rice production system," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Yi, Jun & Li, Huijie & Zhao, Ying & Shao, Ming'an & Zhang, Hailin & Liu, Muxing, 2022. "Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region," Agricultural Water Management, Elsevier, vol. 265(C).
    6. Chen, Shu & Shao, Dongguo & Gu, Wenquan & Xu, Baoli & Li, Haoxin & Fang, Longzhang, 2017. "An interval multistage water allocation model for crop different growth stages under inputs uncertainty," Agricultural Water Management, Elsevier, vol. 186(C), pages 86-97.
    7. Xu, Baoli & Shao, Dongguo & Tan, Xuezhi & Yang, Xia & Gu, Wenquan & Li, Haoxin, 2017. "Evaluation of soil water percolation under different irrigation practices, antecedent moisture and groundwater depths in paddy fields," Agricultural Water Management, Elsevier, vol. 192(C), pages 149-158.
    8. Hua, Keji & He, Jun & Liao, Bin & He, Tianzhong & Yang, Peng & Zhang, Lei, 2023. "Multi-objective decision-making for efficient utilization of water and fertilizer in paddy fields: A case study in Southern China," Agricultural Water Management, Elsevier, vol. 289(C).
    9. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    10. Feng, Zhuangzhuang & Miao, Qingfeng & Shi, Haibin & Feng, Weiying & Li, Xianyue & Yan, Jianwen & Liu, Meihan & Sun, Wei & Dai, Liping & Liu, Jing, 2023. "Simulation of water balance and irrigation strategy of typical sand-layered farmland in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 280(C).
    11. Er-Raki, S. & Ezzahar, J. & Merlin, O. & Amazirh, A. & Hssaine, B. Ait & Kharrou, M.H. & Khabba, S. & Chehbouni, A., 2021. "Performance of the HYDRUS-1D model for water balance components assessment of irrigated winter wheat under different water managements in semi-arid region of Morocco," Agricultural Water Management, Elsevier, vol. 244(C).
    12. Li, Danfeng, 2020. "Quantifying water use and groundwater recharge under flood irrigation in an arid oasis of northwestern China," Agricultural Water Management, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    2. Yu, Qianan & Cui, Yuanlai, 2022. "Improvement and testing of ORYZA model water balance modules for alternate wetting and drying irrigation," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Xu, Baoli & Shao, Dongguo & Tan, Xuezhi & Yang, Xia & Gu, Wenquan & Li, Haoxin, 2017. "Evaluation of soil water percolation under different irrigation practices, antecedent moisture and groundwater depths in paddy fields," Agricultural Water Management, Elsevier, vol. 192(C), pages 149-158.
    4. Belder, P. & Bouman, B. A.M. & Spiertz, J.H.J., 2007. "Exploring options for water savings in lowland rice using a modelling approach," Agricultural Systems, Elsevier, vol. 92(1-3), pages 91-114, January.
    5. Tan, Xuezhi & Shao, Dongguo & Gu, Wenquan & Liu, Huanhuan, 2015. "Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 150(C), pages 67-80.
    6. Cesari de Maria, Sandra & Rienzner, Michele & Facchi, Arianna & Chiaradia, Enrico Antonio & Romani, Marco & Gandolfi, Claudio, 2016. "Water balance implications of switching from continuous submergence to flush irrigation in a rice-growing district," Agricultural Water Management, Elsevier, vol. 171(C), pages 108-119.
    7. Takeda, Naoya & López-Galvis, Lorena & Pineda, Dario & Castilla, Armando & Takahashi, Taro & Fukuda, Shinji & Okada, Kensuke, 2019. "Evaluation of water dynamics of contour-levee irrigation system in sloped rice fields in Colombia," Agricultural Water Management, Elsevier, vol. 217(C), pages 107-118.
    8. Ishfaq, Muhammad & Farooq, Muhammad & Zulfiqar, Usman & Hussain, Saddam & Akbar, Nadeem & Nawaz, Ahmad & Anjum, Shakeel Ahmad, 2020. "Alternate wetting and drying: A water-saving and ecofriendly rice production system," Agricultural Water Management, Elsevier, vol. 241(C).
    9. de Silva, C. Shanthi & Rushton, K.R., 2008. "Representation of rainfed valley ricefields using a soil-water balance model," Agricultural Water Management, Elsevier, vol. 95(3), pages 271-282, March.
    10. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2015. "Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka," Agricultural Water Management, Elsevier, vol. 160(C), pages 132-143.
    11. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Azharuddin Abd Aziz & Mehnaz Mosharrof, 2022. "Combined Use of Biochar with 15 Nitrogen Labelled Urea Increases Rice Yield, N Use Efficiency and Fertilizer N Recovery under Water-Saving Irrigation," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    12. Grotelüschen, Kristina & Gaydon, Donald S. & Langensiepen, Matthias & Ziegler, Susanne & Kwesiga, Julius & Senthilkumar, Kalimuthu & Whitbread, Anthony M. & Becker, Mathias, 2021. "Assessing the effects of management and hydro-edaphic conditions on rice in contrasting East African wetlands using experimental and modelling approaches," Agricultural Water Management, Elsevier, vol. 258(C).
    13. Jing, Qi & Keulen, Herman van & Hengsdijk, Huib, 2010. "Modeling biomass, nitrogen and water dynamics in rice-wheat rotations," Agricultural Systems, Elsevier, vol. 103(7), pages 433-443, September.
    14. Yang, Yubin & Wilson, Lloyd T. & Wang, Jing, 2012. "Site-specific and regional on-farm rice water conservation analyzer (RiceWCA): Development and evaluation of the water balance model," Agricultural Water Management, Elsevier, vol. 115(C), pages 66-82.
    15. Carracelas, G. & Hornbuckle, J. & Rosas, J. & Roel, A., 2019. "Irrigation management strategies to increase water productivity in Oryza sativa (rice) in Uruguay," Agricultural Water Management, Elsevier, vol. 222(C), pages 161-172.
    16. Feng, Liping & Bouman, B. A.M. & Tuong, T.P. & Cabangon, R.J. & Li, Yalong & Lu, Guoan & Feng, Yuehua, 2007. "Exploring options to grow rice using less water in northern China using a modelling approach: I. Field experiments and model evaluation," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 1-13, March.
    17. Jing, Qi & Bouman, Bas & van Keulen, Herman & Hengsdijk, Huib & Cao, Weixing & Dai, Tingbo, 2008. "Disentangling the effect of environmental factors on yield and nitrogen uptake of irrigated rice in Asia," Agricultural Systems, Elsevier, vol. 98(3), pages 177-188, October.
    18. Senthilkumar, K. & Bindraban, P.S. & Thiyagarajan, T.M. & de Ridder, N. & Giller, K.E., 2008. "Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers' (lack of) acceptance," Agricultural Systems, Elsevier, vol. 98(2), pages 82-94, September.
    19. Patel, D.P. & Das, Anup & Munda, G.C. & Ghosh, P.K. & Bordoloi, Juri Sandhya & Kumar, Manoj, 2010. "Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem," Agricultural Water Management, Elsevier, vol. 97(9), pages 1269-1276, September.
    20. Dasgupta, Pragna & Das, Bhabani S. & Sen, Soumitra K., 2015. "Soil water potential and recoverable water stress in drought tolerant and susceptible rice varieties," Agricultural Water Management, Elsevier, vol. 152(C), pages 110-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:132:y:2014:i:c:p:69-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.