IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v237y2020ics037837741831922x.html
   My bibliography  Save this article

The use of Water Requirement Satisfaction Index for assessing agricultural drought on rain-fed maize, in the Luvuvhu River catchment, South Africa

Author

Listed:
  • Masupha, Teboho E.
  • Moeletsi, Mokhele E.

Abstract

Analysis of drought on rain-fed maize production in the Luvuvhu River Catchment was measured using the Water Requirement Satisfaction Index (WRSI). Computation of WRSI was performed using a crop water balance model in Instat+ software for a 120-day maturing maize crop using nine different planting dekads from October to December. This study made use of seven weather stations, which adequately represent climatic and geographical environments of the catchment, containing historical rainfall and temperature data from 1974 to 2015. The non-parametric Spearman’s Rank Correlation test was conducted to determine drought trends. Thereafter, probabilities and extreme widespread dry and wet agricultural seasons were analysed using STATISTICA software. Results revealed that since the 1980s, the catchment had been subjected to frequent drought conditions, with an average frequency of once every two to three seasons. Extreme drought episodes (WRSI <50) were commonly identified in the northern drier parts of the catchment as compared to the high rainfall region, whereby 50-93% of the analysed seasons were subjected to extreme drought conditions. Furthermore, there were no drought trends (ρ values close to 0) during the analysed climate period. Water Requirements Satisfaction Index (WRSI) values corresponding to more intense drought conditions were reflected during the December planting date for all stations. Moreover, at the low rainfall region, it was seen that extreme droughts occurred once in five seasons, regardless of the planting date. Thus, the study led to a recommendation of using October-November as the optimum planting date in the catchment. Furthermore, farmers located areas with high probabilities of drought during critical stages can be advised to supplement rain-fed farming with irrigation should they be located nearby to rivers.

Suggested Citation

  • Masupha, Teboho E. & Moeletsi, Mokhele E., 2020. "The use of Water Requirement Satisfaction Index for assessing agricultural drought on rain-fed maize, in the Luvuvhu River catchment, South Africa," Agricultural Water Management, Elsevier, vol. 237(C).
  • Handle: RePEc:eee:agiwat:v:237:y:2020:i:c:s037837741831922x
    DOI: 10.1016/j.agwat.2020.106142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741831922X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aiguo Dai, 2011. "Drought under global warming: a review," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(1), pages 45-65, January.
    2. J. Malherbe & B. Dieppois & P. Maluleke & M. Staden & D. Pillay, 2016. "South African droughts and decadal variability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 657-681, January.
    3. F. Sönmez & Ali Kömüscü & Ayhan Erkan & Ertan Turgu, 2005. "An Analysis of Spatial and Temporal Dimension of Drought Vulnerability in Turkey Using the Standardized Precipitation Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 35(2), pages 243-264, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omondi, Calisto Kennedy & Rientjes, Tom H.M. & Booij, Martijn J. & Nelson, Andrew D., 2021. "Satellite rainfall bias assessment for crop growth simulation – A case study of maize growth in Kenya," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Mehmet Dikici, 2022. "Drought Analysis for the Seyhan Basin with Vegetation Indices and Comparison with Meteorological Different Indices," Sustainability, MDPI, vol. 14(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatih Tosunoglu & Ibrahim Can, 2016. "Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1457-1477, July.
    2. Lina Eklund & Jonathan Seaquist, 2015. "Meteorological, agricultural and socioeconomic drought in the Duhok Governorate, Iraqi Kurdistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 421-441, March.
    3. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    4. Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.
    5. Luong, Tuan Anh & Nguyen, Manh-Hung & Truong, N.T. Khuong & Le, Kien, 2023. "Rainfall variability and internal migration: The importance of agriculture linkage and gender inequality," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 326-336.
    6. Shamsuddin Shahid & Houshang Behrawan, 2008. "Drought risk assessment in the western part of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 391-413, September.
    7. Xiaoliang Shi & Fei Chen & Hao Ding & Mengqi Shi & Yi Li, 2022. "Assessing Vegetation Ecosystem Resistance to Drought in the Middle Reaches of the Yellow River Basin, China," IJERPH, MDPI, vol. 19(7), pages 1-16, March.
    8. Getachew Tegegne & Assefa M. Melesse, 2020. "Multimodel Ensemble Projection of Hydro-climatic Extremes for Climate Change Impact Assessment on Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3019-3035, July.
    9. Indale Niguse Dejene & Gizachew Kabite Wedajo & Yared A. Bayissa & Ashenif Melese Abraham & Kefalegn Getahun Cherinet, 2023. "Satellite rainfall performance evaluation and application to monitor meteorological drought: a case of Omo-Gibe basin, Ethiopia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 167-201, October.
    10. Jin‐Feng Wang & Lian‐Fa Li, 2008. "Improving Tsunami Warning Systems with Remote Sensing and Geographical Information System Input," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1653-1668, December.
    11. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    12. Shahzada Adnan & Kalim Ullah, 2020. "Development of drought hazard index for vulnerability assessment in Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2989-3010, September.
    13. da Silva, Antonio Samuel Alves & Stosic, Tatijana & Arsenić, Ilija & Menezes, Rômulo Simões Cezar & Stosic, Borko, 2023. "Multifractal analysis of standardized precipitation index in Northeast Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    14. Araneda-Cabrera, Ronnie J. & Bermúdez, María & Puertas, Jerónimo, 2021. "Assessment of the performance of drought indices for explaining crop yield variability at the national scale: Methodological framework and application to Mozambique," Agricultural Water Management, Elsevier, vol. 246(C).
    15. Corwin, D.L. & Scudiero, E. & Zaccaria, D., 2022. "Modified ECa – ECe protocols for mapping soil salinity under micro-irrigation," Agricultural Water Management, Elsevier, vol. 269(C).
    16. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    17. Newton Muhury & Armando A. Apan & Tek N. Marasani & Gebiaw T. Ayele, 2022. "Modelling Floodplain Vegetation Response to Groundwater Variability Using the ArcSWAT Hydrological Model, MODIS NDVI Data, and Machine Learning," Land, MDPI, vol. 11(12), pages 1-23, November.
    18. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    19. Pedcris M. Orencio & Masahiko Fujii, 2014. "A spatiotemporal approach for determining disaster-risk potential based on damage consequences of multiple hazard events," Journal of Risk Research, Taylor & Francis Journals, vol. 17(7), pages 815-836, August.
    20. Susanna Grasso & Pierluigi Claps & Daniele Ganora & Andrea Libertino, 2021. "A Web‐based Open‐source Geoinformation Tool for Regional Water Resources Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 675-687, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:237:y:2020:i:c:s037837741831922x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.