IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4464-d789892.html
   My bibliography  Save this article

Drought Analysis for the Seyhan Basin with Vegetation Indices and Comparison with Meteorological Different Indices

Author

Listed:
  • Mehmet Dikici

    (Department of Civil Engineering, Kestel Campus, Alanya Alaaddin Keykubat University, Alanya 07945, Turkey)

Abstract

Various drought indices have been developed to monitor drought, which is a result of climate change, and mitigate its adverse effects on water resources, especially in agriculture. Vegetation indices determined by remote sensing were examined by many recent studies and shed light on drought risk management. In the current study, one of the 25 drainage basins in Turkey—the Seyhan Basin, located in the south of the country—was investigated. The Normalized Difference Vegetation Index (NDVI) and the Vegetation Condition Index (VCI) are the most widely used vegetation indices and are very useful because they give results only based on satellite images. This study examined the Seyhan Basin using satellite data in which the vegetation transformation occurring due to the decline of agricultural and forest areas was seen. An increase in drought frequency was detected in the Seyhan Basin using the NDVI and VCI indices and compared with different indices. The results obtained revealed that climate change and drought is increasing with a linear uptrend. It is recommended that decision-makers take the necessary measures by considering the drought risk maps. Long-term drought management plans should also be prepared and implemented.

Suggested Citation

  • Mehmet Dikici, 2022. "Drought Analysis for the Seyhan Basin with Vegetation Indices and Comparison with Meteorological Different Indices," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4464-:d:789892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4464/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4464/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pérez Blanco, Carlos Dionisio & Gómez, Carlos Mario, 2014. "Drought management plans and water availability in agriculture:A risk assessment model for a Southern European basin," MPRA Paper 60590, University Library of Munich, Germany, revised 14 May 2013.
    2. Sanjay Jain & Ravish Keshri & Ajanta Goswami & Archana Sarkar, 2010. "Application of meteorological and vegetation indices for evaluation of drought impact: a case study for Rajasthan, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 643-656, September.
    3. Masupha, Teboho E. & Moeletsi, Mokhele E., 2020. "The use of Water Requirement Satisfaction Index for assessing agricultural drought on rain-fed maize, in the Luvuvhu River catchment, South Africa," Agricultural Water Management, Elsevier, vol. 237(C).
    4. Seyedeh Mahboobeh Jafari & Mohammad Reza Nikoo & Maryam Dehghani & Mohammadali Alijanian, 2020. "Evaluation of two satellite-based products against ground-based observation for drought analysis in the southern part of Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1249-1267, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cihangir Koycegiz & Meral Buyukyildiz, 2023. "Investigation of spatiotemporal variability of some precipitation indices in Seyhan Basin, Turkey: monotonic and sub-trend analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2211-2244, March.
    2. Dilayda Soylu Pekpostalci & Rifat Tur & Ali Danandeh Mehr & Mohammad Amin Vazifekhah Ghaffari & Dominika Dąbrowska & Vahid Nourani, 2023. "Drought Monitoring and Forecasting across Turkey: A Contemporary Review," Sustainability, MDPI, vol. 15(7), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omidreza Mikaili & Majid Rahimzadegan, 2022. "Investigating remote sensing indices to monitor drought impacts on a local scale (case study: Fars province, Iran)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2511-2529, April.
    2. Francisco José Del-Toro-Guerrero & Luis Walter Daesslé & Rodrigo Méndez-Alonzo & Thomas Kretzschmar, 2022. "Surface Reflectance–Derived Spectral Indices for Drought Detection: Application to the Guadalupe Valley Basin, Baja California, Mexico," Land, MDPI, vol. 11(6), pages 1-19, May.
    3. German Santacruz-De León & Janete Moran-Ramírez & José Alfredo Ramos-Leal, 2022. "Impact of Drought and Groundwater Quality on Agriculture in a Semi-Arid Zone of Mexico," Agriculture, MDPI, vol. 12(9), pages 1-18, September.
    4. V. K. Prajapati & M. Khanna & M. Singh & R. Kaur & R. N. Sahoo & D. K. Singh, 2021. "Evaluation of time scale of meteorological, hydrological and agricultural drought indices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 89-109, October.
    5. R. Sahoo & Dipanwita Dutta & M. Khanna & N. Kumar & S. Bandyopadhyay, 2015. "Drought assessment in the Dhar and Mewat Districts of India using meteorological, hydrological and remote-sensing derived indices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 733-751, June.
    6. Lu Liu & Yang Hong & Christopher Bednarczyk & Bin Yong & Mark Shafer & Rachel Riley & James Hocker, 2012. "Hydro-Climatological Drought Analyses and Projections Using Meteorological and Hydrological Drought Indices: A Case Study in Blue River Basin, Oklahoma," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2761-2779, August.
    7. Dimitrios Myronidis & Dimitrios Stathis & Konstantinos Ioannou & Dimitrios Fotakis, 2012. "An Integration of Statistics Temporal Methods to Track the Effect of Drought in a Shallow Mediterranean Lake," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4587-4605, December.
    8. Mohamed Mouafik & Abdelghani Chakhchar & Mounir Fouad & Ahmed El Aboudi, 2024. "Remote Sensing Technologies for Monitoring Argane Forest Stands: A Comprehensive Review," Geographies, MDPI, vol. 4(3), pages 1-21, July.
    9. T. V. Lakshmi Kumar & Koteswara Rao & R. Uma & Humberto Barbosa & K. V. K. R. K. Patnaik & Emily Prabha Jothi, 2016. "On the relation of vegetation and southwest monsoon rainfall over Western Ghats, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 425-436, October.
    10. Leisenheimer, Leonie & Wellmann, Thilo & Jänicke, Clemens & Haase, Dagmar, 2024. "Monitoring drought impacts on street trees using remote sensing - Disentangling temporal and species-specific response patterns with Sentinel-2 imagery," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 82, pages 1-14.
    11. N. Patel & Kamana Yadav, 2015. "Monitoring spatio-temporal pattern of drought stress using integrated drought index over Bundelkhand region, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 663-677, June.
    12. Iman Khosravi & Yaser Jouybari-Moghaddam & Mohammad Reza Sarajian, 2017. "The comparison of NN, SVR, LSSVR and ANFIS at modeling meteorological and remotely sensed drought indices over the eastern district of Isfahan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1507-1522, July.
    13. Rolandas Drejeris & Martynas Rusteika, 2022. "New Approach to the Public Authorities’ Activities Development in the Crop Insurance System: Lithuanian Case," Agriculture, MDPI, vol. 12(8), pages 1-15, August.
    14. Soheila Pouyan & Mojgan Bordbar & Venkatesh Ravichandran & John P. Tiefenbacher & Mehrzad Kherad & Hamid Reza Pourghasemi, 2023. "Spatiotemporal monitoring of droughts in Iran using remote-sensing indices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 1-24, May.
    15. Manish Kumar Goyal & Ashutosh Sharma, 2016. "A fuzzy c-means approach regionalization for analysis of meteorological drought homogeneous regions in western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1831-1847, December.
    16. Omondi, Calisto Kennedy & Rientjes, Tom H.M. & Booij, Martijn J. & Nelson, Andrew D., 2021. "Satellite rainfall bias assessment for crop growth simulation – A case study of maize growth in Kenya," Agricultural Water Management, Elsevier, vol. 258(C).
    17. Omvir Singh & Divya Saini & Pankaj Bhardwaj, 2021. "Characterization of meteorological drought over a dryland ecosystem in north western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 785-826, October.
    18. Watinee Thavorntam & Netnapid Tantemsapya & Leisa Armstrong, 2015. "A combination of meteorological and satellite-based drought indices in a better drought assessment and forecasting in Northeast Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1453-1474, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4464-:d:789892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.