IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v80y2016i1p657-681.html
   My bibliography  Save this article

South African droughts and decadal variability

Author

Listed:
  • J. Malherbe
  • B. Dieppois
  • P. Maluleke
  • M. Staden
  • D. Pillay

Abstract

We explore the historical occurrence of extensive droughts over South Africa within the context of decadal climate variability. A Standardized Precipitation Index dataset is developed and used to assess the spatial extent of droughts in South Africa for the period 1920–2014. The most extensive droughts over the period at various time scales are identified and discussed. Results of a wavelet analysis are also presented towards identifying statistically significant regional climate variation with which the occurrence of droughts is associated. The occurrence of drought with respect to the El Niño Southern Oscillation and decadal climate variability is also considered. Significant associations between short-term droughts and decadal variability are pointed out. An overview of global sea surface temperature and Southern Hemisphere sea-level pressure associations with three prominent scales of multi-year climate variability is given. Dry epochs at the most prominent time scales are shown to be significantly negatively related to the Southern Annular Mode and associated sea surface temperature anomalies in the mid-to-high southern latitudes. Relations with the Pacific Decadal Oscillation, Inter-Decadal Pacific Oscillation and ENSO, which are all associated with a Southern Annular Mode of opposite sign, are also highlighted. Copyright Springer Science+Business Media Dordrecht 2016

Suggested Citation

  • J. Malherbe & B. Dieppois & P. Maluleke & M. Staden & D. Pillay, 2016. "South African droughts and decadal variability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 657-681, January.
  • Handle: RePEc:spr:nathaz:v:80:y:2016:i:1:p:657-681
    DOI: 10.1007/s11069-015-1989-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1989-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1989-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheng Yue & ChunYuan Wang, 2004. "The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(3), pages 201-218, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masupha, Teboho E. & Moeletsi, Mokhele E., 2020. "The use of Water Requirement Satisfaction Index for assessing agricultural drought on rain-fed maize, in the Luvuvhu River catchment, South Africa," Agricultural Water Management, Elsevier, vol. 237(C).
    2. Valerie Graw & Gohar Ghazaryan & Karen Dall & Andoni Delgado Gómez & Ayman Abdel-Hamid & Andries Jordaan & Ruben Piroska & Joachim Post & Jörg Szarzynski & Yvonne Walz & Olena Dubovyk, 2017. "Drought Dynamics and Vegetation Productivity in Different Land Management Systems of Eastern Cape, South Africa—A Remote Sensing Perspective," Sustainability, MDPI, vol. 9(10), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansoor Ahmed & Ghulam Hussain Dars & Suhail Ahmed & Nir Y. Krakauer, 2023. "Analyzing drought trends over Sindh Province, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 643-661, October.
    2. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    3. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    4. Wan-Jiun Chen, 2017. "Is the Green Solow Model Valid for $$\hbox {CO}_{2}$$ CO 2 Emissions in the European Union?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(1), pages 23-45, May.
    5. Myoung-Jin Um & Jun-Haeng Heo & Momcilo Markus & Donald J. Wuebbles, 2018. "Performance Evaluation of four Statistical Tests for Trend and Non-stationarity and Assessment of Observed and Projected Annual Maximum Precipitation Series in Major United States Cities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 913-933, February.
    6. Milan Stojković & Srđan Kostić & Stevan Prohaska & Jasna Plavšić & Vesna Tripković, 2017. "A New Approach for Trend Assessment of Annual Streamflows: a Case Study of Hydropower Plants in Serbia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1089-1103, March.
    7. Anas Mahmood Al-Juboori, 2019. "Generating Monthly Stream Flow Using Nearest River Data: Assessing Different Trees Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3257-3270, July.
    8. Farahani Mohd Saimi & Firdaus Mohamad Hamzah & Mohd Ekhwan Toriman & Othman Jaafar & Hazrina Tajudin, 2020. "Trend and Linearity Analysis of Meteorological Parameters in Peninsular Malaysia," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    9. Mojtaba Shadmani & Safar Marofi & Majid Roknian, 2012. "Trend Analysis in Reference Evapotranspiration Using Mann-Kendall and Spearman’s Rho Tests in Arid Regions of Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 211-224, January.
    10. Gokmen Ceribasi & Ahmet Iyad Ceyhunlu & Andrzej Wałęga & Dariusz Młyński, 2022. "Investigation of the Effect of Climate Change on Energy Produced by Hydroelectric Power Plants (HEPPs) by Trend Analysis Method: A Case Study for Dogancay I–II HEPPs," Energies, MDPI, vol. 15(7), pages 1-17, March.
    11. Guangju Zhao & Georg Hörmann & Nicola Fohrer & Zengxin Zhang & Jianqing Zhai, 2010. "Streamflow Trends and Climate Variability Impacts in Poyang Lake Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 689-706, March.
    12. Jinfei Hu & Guangju Zhao & Pengfei Li & Xingmin Mu, 2022. "Variations of pan evaporation and its attribution from 1961 to 2015 on the Loess Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1199-1217, March.
    13. Mohammed Achite & Gokmen Ceribasi & Ahmet Iyad Ceyhunlu & Andrzej Wałęga & Tommaso Caloiero, 2021. "The Innovative Polygon Trend Analysis (IPTA) as a Simple Qualitative Method to Detect Changes in Environment—Example Detecting Trends of the Total Monthly Precipitation in Semiarid Area," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    14. Varsha Pandey & Prashant K Srivastava & Sudhir K Singh & George P. Petropoulos & Rajesh Kumar Mall, 2021. "Drought Identification and Trend Analysis Using Long-Term CHIRPS Satellite Precipitation Product in Bundelkhand, India," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    15. Lihua Xiong & Tao Du & Chong-Yu Xu & Shenglian Guo & Cong Jiang & Christopher Gippel, 2015. "Non-Stationary Annual Maximum Flood Frequency Analysis Using the Norming Constants Method to Consider Non-Stationarity in the Annual Daily Flow Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3615-3633, August.
    16. Xingcai Liu & Zongxue Xu & Ruihong Yu, 2011. "Trend of climate variability in China during the past decades," Climatic Change, Springer, vol. 109(3), pages 503-516, December.
    17. Muhammad Shehzad Ashraf & Muhammad Shahid & Muhammad Waseem & Muhammad Azam & Khalil Ur Rahman, 2023. "Assessment of Variability in Hydrological Droughts Using the Improved Innovative Trend Analysis Method," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    18. Wangyuyang Zhai & Zhoufeng Wang & Youcan Feng & Lijun Xue & Zhenjie Ma & Lin Tian & Hongliang Sun, 2023. "Developing the Actual Precipitation Probability Distribution Based on the Complete Daily Series," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    19. Dingfang Li & Huantian Xie & Lihua Xiong, 2014. "Temporal Change Analysis Based on Data Characteristics and Nonparametric Test," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 227-240, January.
    20. Ahmet Öztopal & Zekâi Şen, 2017. "Innovative Trend Methodology Applications to Precipitation Records in Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 727-737, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:80:y:2016:i:1:p:657-681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.