IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v233y2020ics0378377419316087.html
   My bibliography  Save this article

Determining water requirements for young peach trees in a humid subtropical climate

Author

Listed:
  • Zambrano-Vaca, Carlos
  • Zotarelli, Lincoln
  • Beeson, Richard C.
  • Morgan, Kelly T.
  • Migliaccio, Kati W.
  • Chaparro, José X.
  • Olmstead, Mercy A.

Abstract

In the southern USA, low soil water holding capacity and erratic rainfall patterns create scenarios where plant water stress may occur, reducing early peach tree growth. Therefore, irrigation management is a key component to ensure adequate water supply during early tree growth stages. The objective of this study was to determine water requirements and crop coefficient (Kc) of young peach trees grown in a subtropical climate. A study was conducted in central Florida using young peach trees ‘TropicBeauty’ grafted onto ‘Flordaguard’. Daily actual evapotranspiration (ETA) was determined using weighing lysimeters. The highest daily peach water demand was recorded during the shoot development stage (23.7 L) between August and October, whereas the lowest daily ETA was 0.71 L, during dormancy in December and January. Year-round Kc values for young peach trees were obtained and ranged from 0.20 to 0.68. There was a significant correlation between plant water consumption with trunk cross-sectional area (TCSA) and projected canopy area (PCA), which can be used to estimate ETA. Peach irrigation water demand for 1–3 years old trees, expressed as daily ETA, can be estimated using daily reference evapotranspiration and PCA. The accurate determination of crop water demand allows the seasonal adjustment of irrigation scheduling avoiding water stress, or over-irrigation of young peach trees.

Suggested Citation

  • Zambrano-Vaca, Carlos & Zotarelli, Lincoln & Beeson, Richard C. & Morgan, Kelly T. & Migliaccio, Kati W. & Chaparro, José X. & Olmstead, Mercy A., 2020. "Determining water requirements for young peach trees in a humid subtropical climate," Agricultural Water Management, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:agiwat:v:233:y:2020:i:c:s0378377419316087
    DOI: 10.1016/j.agwat.2020.106102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419316087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sammis, T. W. & Mexal, J. G. & Miller, D., 2004. "Evapotranspiration of flood-irrigated pecans," Agricultural Water Management, Elsevier, vol. 69(3), pages 179-190, October.
    2. Abrisqueta, I. & Abrisqueta, J.M. & Tapia, L.M. & Munguía, J.P. & Conejero, W. & Vera, J. & Ruiz-Sánchez, M.C., 2013. "Basal crop coefficients for early-season peach trees," Agricultural Water Management, Elsevier, vol. 121(C), pages 158-163.
    3. Beeson Jr., R.C., 2011. "Weighing lysimeter systems for quantifying water use and studies of controlled water stress for crops grown in low bulk density substrates," Agricultural Water Management, Elsevier, vol. 98(6), pages 967-976, April.
    4. Paco, T.A. & Ferreira, M.I. & Conceicao, N., 2006. "Peach orchard evapotranspiration in a sandy soil: Comparison between eddy covariance measurements and estimates by the FAO 56 approach," Agricultural Water Management, Elsevier, vol. 85(3), pages 305-313, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schwaller, Christoph & Keller, Yvonne & Helmreich, Brigitte & Drewes, Jörg E., 2021. "Estimating the agricultural irrigation demand for planning of non-potable water reuse projects," Agricultural Water Management, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anderson, Ray G. & Alfieri, Joseph G. & Tirado-Corbalá, Rebecca & Gartung, Jim & McKee, Lynn G. & Prueger, John H. & Wang, Dong & Ayars, James E. & Kustas, William P., 2017. "Assessing FAO-56 dual crop coefficients using eddy covariance flux partitioning," Agricultural Water Management, Elsevier, vol. 179(C), pages 92-102.
    2. Ouyang, Z.-P. & Mei, X.-R. & Li, Y.-Z. & Guo, J.-X., 2013. "Measurements of water dissipation and water use efficiency at the canopy level in a peach orchard," Agricultural Water Management, Elsevier, vol. 129(C), pages 80-86.
    3. Conesa, María R. & Conejero, Wenceslao & Vera, Juan & Agulló, Vicente & García-Viguera, Cristina & Ruiz-Sánchez, M. Carmen, 2021. "Irrigation management practices in nectarine fruit quality at harvest and after cold storage," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    5. Dzikiti, S. & Lotter, D. & Mpandeli, S. & Nhamo, L., 2022. "Assessing the energy and water balance dynamics of rain-fed rooibos tea crops (Aspalathus linearis) under changing Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 274(C).
    6. Abrisqueta, I. & Abrisqueta, J.M. & Tapia, L.M. & Munguía, J.P. & Conejero, W. & Vera, J. & Ruiz-Sánchez, M.C., 2013. "Basal crop coefficients for early-season peach trees," Agricultural Water Management, Elsevier, vol. 121(C), pages 158-163.
    7. Simmons, Luke J. & Wang, Junming & Sammis, Ted W. & Miller, David R., 2007. "An evaluation of two inexpensive energy-balance techniques for measuring water use in flood-irrigated pecans (Carya illinoinensis)," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 181-191, March.
    8. Wang, Junming & Sammis, Ted W. & Andales, Allan A. & Simmons, Luke J. & Gutschick, Vincent P. & Miller, David R., 2007. "Crop coefficients of open-canopy pecan orchards," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 253-262, March.
    9. Vera-Repullo, J.A. & Ruiz-Peñalver, L. & Jiménez-Buendía, M. & Rosillo, J.J. & Molina-Martínez, J.M., 2015. "Software for the automatic control of irrigation using weighing-drainage lysimeters," Agricultural Water Management, Elsevier, vol. 151(C), pages 4-12.
    10. Pengrui Ai & Yingjie Ma, 2020. "Estimation of Evapotranspiration of a Jujube/Cotton Intercropping System in an Arid Area Based on the Dual Crop Coefficient Method," Agriculture, MDPI, vol. 10(3), pages 1-14, March.
    11. Raphael, O.D. & Ogedengbe, K. & Fasinmirin, J.T. & Okunade, D. & Akande, I. & Gbadamosi, A., 2018. "Growth-stage-specific crop coefficient and consumptive use of Capsicum chinense using hydraulic weighing lysimeter," Agricultural Water Management, Elsevier, vol. 203(C), pages 179-185.
    12. Wang, Dong & Zhang, Huihui & Gartung, Jim, 2020. "Long-term productivity of early season peach trees under different irrigation methods and postharvest deficit irrigation," Agricultural Water Management, Elsevier, vol. 230(C).
    13. Incrocci, Luca & Marzialetti, Paolo & Incrocci, Giorgio & Di Vita, Andrea & Balendonck, Jos & Bibbiani, Carlo & Spagnol, Serafino & Pardossi, Alberto, 2014. "Substrate water status and evapotranspiration irrigation scheduling in heterogenous container nursery crops," Agricultural Water Management, Elsevier, vol. 131(C), pages 30-40.
    14. Longo-Minnolo, G. & Vanella, D. & Consoli, S. & Intrigliolo, D.S. & Ramírez-Cuesta, J.M., 2020. "Integrating forecast meteorological data into the ArcDualKc model for estimating spatially distributed evapotranspiration rates of a citrus orchard," Agricultural Water Management, Elsevier, vol. 231(C).
    15. Mobe, N.T. & Dzikiti, S. & Zirebwa, S.F. & Midgley, S.J.E. & von Loeper, W. & Mazvimavi, D. & Ntshidi, Z. & Jovanovic, N.Z., 2020. "Estimating crop coefficients for apple orchards with varying canopy cover using measured data from twelve orchards in the Western Cape Province, South Africa," Agricultural Water Management, Elsevier, vol. 233(C).
    16. Zanotelli, Damiano & Montagnani, Leonardo & Andreotti, Carlo & Tagliavini, Massimo, 2019. "Evapotranspiration and crop coefficient patterns of an apple orchard in a sub-humid environment," Agricultural Water Management, Elsevier, vol. 226(C).
    17. Er-Raki, S. & Chehbouni, A. & Hoedjes, J. & Ezzahar, J. & Duchemin, B. & Jacob, F., 2008. "Improvement of FAO-56 method for olive orchards through sequential assimilation of thermal infrared-based estimates of ET," Agricultural Water Management, Elsevier, vol. 95(3), pages 309-321, March.
    18. Ibraimo, Nadia A. & Taylor, Nicky J. & Steyn, J. Martin & Gush, Mark B. & Annandale, John G., 2016. "Estimating water use of mature pecan orchards: A six stage crop growth curve approach," Agricultural Water Management, Elsevier, vol. 177(C), pages 359-368.
    19. María R. Conesa & Lidia López-Martínez & Wenceslao Conejero & Juan Vera & María Carmen Ruiz-Sánchez, 2021. "Arbuscular Mycorrhizal Fungus Stimulates Young Field-Grown Nectarine Trees," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    20. Conceição, Nuno & Tezza, Luca & Häusler, Melanie & Lourenço, Sónia & Pacheco, Carlos A. & Ferreira, M. Isabel, 2017. "Three years of monitoring evapotranspiration components and crop and stress coefficients in a deficit irrigated intensive olive orchard," Agricultural Water Management, Elsevier, vol. 191(C), pages 138-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:233:y:2020:i:c:s0378377419316087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.