IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v121y2013icp158-163.html
   My bibliography  Save this article

Basal crop coefficients for early-season peach trees

Author

Listed:
  • Abrisqueta, I.
  • Abrisqueta, J.M.
  • Tapia, L.M.
  • Munguía, J.P.
  • Conejero, W.
  • Vera, J.
  • Ruiz-Sánchez, M.C.

Abstract

A 4-year long experiment was conducted using drainage lysimeters to determine the basal crop coefficients of an early season drip irrigated peach tree cultivar growing in a clay loam textured soil in southern Spain. The lysimeters were equipped with irrigation and drainage water meters and access tubes for monitoring the soil water content by neutron probe. Crop evapotranspiration (ETc) was obtained from the water balance equation. Following the dual crop coefficient approach, Kc was split into the basal crop coefficient (Kcb) and the soil evaporation coefficient (Ke). The effect of tree size on Kcb was determined for two canopy covers. The Kcb for full yield peach trees changed during the growing season gradually increasing from 0.15 at the beginning of the year (January) to a maximum of 1.0 during July, followed by a rapid fall to 0.15 at the end of year. The proposed curvilinear Kcb pattern fitted well with the phenological stages and their water use, and could serve for irrigation scheduling for early maturing peach trees growing in Mediterranean semi-arid climatic conditions.

Suggested Citation

  • Abrisqueta, I. & Abrisqueta, J.M. & Tapia, L.M. & Munguía, J.P. & Conejero, W. & Vera, J. & Ruiz-Sánchez, M.C., 2013. "Basal crop coefficients for early-season peach trees," Agricultural Water Management, Elsevier, vol. 121(C), pages 158-163.
  • Handle: RePEc:eee:agiwat:v:121:y:2013:i:c:p:158-163
    DOI: 10.1016/j.agwat.2013.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741300036X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abrisqueta, I. & Vera, J. & Tapia, L.M. & Abrisqueta, J.M. & Ruiz-Sánchez, M.C., 2012. "Soil water content criteria for peach trees water stress detection during the postharvest period," Agricultural Water Management, Elsevier, vol. 104(C), pages 62-67.
    2. Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: I. Factors governing measurement accuracy," Agricultural Water Management, Elsevier, vol. 98(6), pages 899-920, April.
    3. Abrisqueta, J. M. & Ruiz, A. & Franco, J. A., 2001. "Water balance of apricot trees (Prunus armeniaca L. cv. Bulida) under drip irrigation," Agricultural Water Management, Elsevier, vol. 50(3), pages 211-227, September.
    4. Paco, T.A. & Ferreira, M.I. & Conceicao, N., 2006. "Peach orchard evapotranspiration in a sandy soil: Comparison between eddy covariance measurements and estimates by the FAO 56 approach," Agricultural Water Management, Elsevier, vol. 85(3), pages 305-313, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Conesa, María R. & Conejero, Wenceslao & Vera, Juan & Agulló, Vicente & García-Viguera, Cristina & Ruiz-Sánchez, M. Carmen, 2021. "Irrigation management practices in nectarine fruit quality at harvest and after cold storage," Agricultural Water Management, Elsevier, vol. 243(C).
    2. María R. Conesa & Lidia López-Martínez & Wenceslao Conejero & Juan Vera & María Carmen Ruiz-Sánchez, 2021. "Arbuscular Mycorrhizal Fungus Stimulates Young Field-Grown Nectarine Trees," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    3. Wang, Dong & Zhang, Huihui & Gartung, Jim, 2020. "Long-term productivity of early season peach trees under different irrigation methods and postharvest deficit irrigation," Agricultural Water Management, Elsevier, vol. 230(C).
    4. de la Rosa, J.M. & Conesa, M.R. & Domingo, R. & Torres, R. & Pérez-Pastor, A., 2013. "Feasibility of using trunk diameter fluctuation and stem water potential reference lines for irrigation scheduling of early nectarine trees," Agricultural Water Management, Elsevier, vol. 126(C), pages 133-141.
    5. Zambrano-Vaca, Carlos & Zotarelli, Lincoln & Beeson, Richard C. & Morgan, Kelly T. & Migliaccio, Kati W. & Chaparro, José X. & Olmstead, Mercy A., 2020. "Determining water requirements for young peach trees in a humid subtropical climate," Agricultural Water Management, Elsevier, vol. 233(C).
    6. Ouyang, Z.-P. & Mei, X.-R. & Li, Y.-Z. & Guo, J.-X., 2013. "Measurements of water dissipation and water use efficiency at the canopy level in a peach orchard," Agricultural Water Management, Elsevier, vol. 129(C), pages 80-86.
    7. Anderson, Ray G. & Alfieri, Joseph G. & Tirado-Corbalá, Rebecca & Gartung, Jim & McKee, Lynn G. & Prueger, John H. & Wang, Dong & Ayars, James E. & Kustas, William P., 2017. "Assessing FAO-56 dual crop coefficients using eddy covariance flux partitioning," Agricultural Water Management, Elsevier, vol. 179(C), pages 92-102.
    8. Hui Cao & Hongbo Wang & Yong Li & Abdoul Kader Mounkaila Hamani & Nan Zhang & Xingpeng Wang & Yang Gao, 2021. "Evapotranspiration Partition and Dual Crop Coefficients in Apple Orchard with Dwarf Stocks and Dense Planting in Arid Region, Aksu Oasis, Southern Xinjiang," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    9. Pengrui Ai & Yingjie Ma, 2020. "Estimation of Evapotranspiration of a Jujube/Cotton Intercropping System in an Arid Area Based on the Dual Crop Coefficient Method," Agriculture, MDPI, vol. 10(3), pages 1-14, March.
    10. Raphael, O.D. & Ogedengbe, K. & Fasinmirin, J.T. & Okunade, D. & Akande, I. & Gbadamosi, A., 2018. "Growth-stage-specific crop coefficient and consumptive use of Capsicum chinense using hydraulic weighing lysimeter," Agricultural Water Management, Elsevier, vol. 203(C), pages 179-185.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dzikiti, S. & Lotter, D. & Mpandeli, S. & Nhamo, L., 2022. "Assessing the energy and water balance dynamics of rain-fed rooibos tea crops (Aspalathus linearis) under changing Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Ouyang, Z.-P. & Mei, X.-R. & Li, Y.-Z. & Guo, J.-X., 2013. "Measurements of water dissipation and water use efficiency at the canopy level in a peach orchard," Agricultural Water Management, Elsevier, vol. 129(C), pages 80-86.
    3. Puppo, Lucía & García, Claudio & Bautista, Eduardo & Hunsaker, Douglas J. & Beretta, Andrés & Girona, Joan, 2019. "Seasonal basal crop coefficient pattern of young non-bearing olive trees grown in drainage lysimeters in a temperate sub-humid climate," Agricultural Water Management, Elsevier, vol. 226(C).
    4. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    5. Conesa, María R. & Conejero, Wenceslao & Vera, Juan & Agulló, Vicente & García-Viguera, Cristina & Ruiz-Sánchez, M. Carmen, 2021. "Irrigation management practices in nectarine fruit quality at harvest and after cold storage," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    8. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    9. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    10. Nicolas, E. & Torrecillas, A. & Ortuno, M.F. & Domingo, R. & Alarcon, J.J., 2005. "Evaluation of transpiration in adult apricot trees from sap flow measurements," Agricultural Water Management, Elsevier, vol. 72(2), pages 131-145, March.
    11. Yang, Yanmin & Yang, Yonghui & Han, Shumin & Li, Huilong & Wang, Lu & Ma, Qingtao & Ma, Lexin & Wang, Linna & Hou, Zhenjun & Chen, Li & Liu, De Li, 2023. "Comparison of water-saving potential of fallow and crop change with high water-use winter-wheat – summer-maize rotation," Agricultural Water Management, Elsevier, vol. 289(C).
    12. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    13. Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
    14. Shahadha, Saadi Sattar & Wendroth, Ole & Zhu, Junfeng & Walton, Jason, 2019. "Can measured soil hydraulic properties simulate field water dynamics and crop production?," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    15. Wang, Weishu & Rong, Yao & Dai, Xiaoqin & Zhang, Chenglong & Wang, Chaozi & Huo, Zailin, 2024. "Variation and attribution of energy distribution for salinized sunflower farmland in arid area," Agricultural Water Management, Elsevier, vol. 297(C).
    16. Escarabajal-Henarejos, D. & Molina-Martínez, J.M. & Fernández-Pacheco, D.G. & Cavas-Martínez, F. & García-Mateos, G., 2015. "Digital photography applied to irrigation management of Little Gem lettuce," Agricultural Water Management, Elsevier, vol. 151(C), pages 148-157.
    17. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    18. Hu, Xinyu & Zhao, Jinfeng & Sun, Shikun & Jia, Chengru & Zhang, Fuyao & Ma, Yizhe & Wang, Kaixuan & Wang, Yubao, 2023. "Evaluation of the temporal reconstruction methods for MODIS-based continuous daily actual evapotranspiration estimation," Agricultural Water Management, Elsevier, vol. 275(C).
    19. Elfarkh, Jamal & Simonneaux, Vincent & Jarlan, Lionel & Ezzahar, Jamal & Boulet, Gilles & Chakir, Adnane & Er-Raki, Salah, 2022. "Evapotranspiration estimates in a traditional irrigated area in semi-arid Mediterranean. Comparison of four remote sensing-based models," Agricultural Water Management, Elsevier, vol. 270(C).
    20. Segovia-Cardozo, Daniel Alberto & Rodríguez-Sinobas, Leonor & Zubelzu, Sergio, 2019. "Water use efficiency of corn among the irrigation districts across the Duero river basin (Spain): Estimation of local crop coefficients by satellite images," Agricultural Water Management, Elsevier, vol. 212(C), pages 241-251.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:121:y:2013:i:c:p:158-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.