IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v231y2020ics0378377419312491.html
   My bibliography  Save this article

Integrating forecast meteorological data into the ArcDualKc model for estimating spatially distributed evapotranspiration rates of a citrus orchard

Author

Listed:
  • Longo-Minnolo, G.
  • Vanella, D.
  • Consoli, S.
  • Intrigliolo, D.S.
  • Ramírez-Cuesta, J.M.

Abstract

In the last years, several satellite-based models, using measured or forecast meteorological data, have been developed for determining spatially distributed crop evapotranspiration (ETc) estimates. The study herein presented aims at assessing the reliability of the ArcDualKc model, based on the FAO-56 dual crop coefficient (Kc), for deriving spatially distributed estimates of Kc and ETc in a deficit irrigated (DI) orange orchard. Daily ETc and dual-Kc values were obtained using Sentinel-2 satellite imagery in combination with measured and forecast meteorological data provided by the nearest weather station and by COSMO model, respectively. Overestimations on Kc and ETc resulted from the study when using forecast instead of measured meteorological data (average PBIAS of 7.62% and 26.24%, respectively); this might be caused by some inaccuracies in meteorological predictions. The evaporation coefficient (Ke) derived by the ArcDualKc model resulted similar between the DI and the fully irrigated treatments. Differences up to 6% in terms of Kc and ETc were identified among the irrigation strategies, mainly due to variations of the transpiration coefficient (Kcb). Despite the reliability of the ArcDualKc model, the obtained results might be influenced by the heterogeneity of Sentinel-2 pixel, containing vegetated and bare soil surfaces, highlighting the need to integrate the model with ground-based data or by using higher-resolution images.

Suggested Citation

  • Longo-Minnolo, G. & Vanella, D. & Consoli, S. & Intrigliolo, D.S. & Ramírez-Cuesta, J.M., 2020. "Integrating forecast meteorological data into the ArcDualKc model for estimating spatially distributed evapotranspiration rates of a citrus orchard," Agricultural Water Management, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377419312491
    DOI: 10.1016/j.agwat.2019.105967
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419312491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Consoli, S. & Stagno, F. & Roccuzzo, G. & Cirelli, G.L. & Intrigliolo, F., 2014. "Sustainable management of limited water resources in a young orange orchard," Agricultural Water Management, Elsevier, vol. 132(C), pages 60-68.
    2. Peddinti, Srinivasa Rao & Kambhammettu, BVN P, 2019. "Dynamics of crop coefficients for citrus orchards of central India using water balance and eddy covariance flux partition techniques," Agricultural Water Management, Elsevier, vol. 212(C), pages 68-77.
    3. Gong, Xuewen & Liu, Hao & Sun, Jingsheng & Gao, Yang & Zhang, Hao, 2019. "Comparison of Shuttleworth-Wallace model and dual crop coefficient method for estimating evapotranspiration of tomato cultivated in a solar greenhouse," Agricultural Water Management, Elsevier, vol. 217(C), pages 141-153.
    4. Singh, Sukhbir & Boote, Kenneth J. & Angadi, Sangamesh V. & Grover, Kulbhushan K., 2017. "Estimating water balance, evapotranspiration and water use efficiency of spring safflower using the CROPGRO model," Agricultural Water Management, Elsevier, vol. 185(C), pages 137-144.
    5. Rallo, Giovanni & González-Altozano, Pablo & Manzano-Juárez, Juan & Provenzano, Giuseppe, 2017. "Using field measurements and FAO-56 model to assess the eco-physiological response of citrus orchards under regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 136-147.
    6. Luo, Yufeng & Chang, Xiaomin & Peng, Shizhang & Khan, Shahbaz & Wang, Weiguang & Zheng, Qiang & Cai, Xueliang, 2014. "Short-term forecasting of daily reference evapotranspiration using the Hargreaves–Samani model and temperature forecasts," Agricultural Water Management, Elsevier, vol. 136(C), pages 42-51.
    7. Consoli, S. & Licciardello, F. & Vanella, D. & Pasotti, L. & Villani, G. & Tomei, F., 2016. "Testing the water balance model criteria using TDR measurements, micrometeorological data and satellite-based information," Agricultural Water Management, Elsevier, vol. 170(C), pages 68-80.
    8. Gago, J. & Douthe, C. & Coopman, R.E. & Gallego, P.P. & Ribas-Carbo, M. & Flexas, J. & Escalona, J. & Medrano, H., 2015. "UAVs challenge to assess water stress for sustainable agriculture," Agricultural Water Management, Elsevier, vol. 153(C), pages 9-19.
    9. Mokhtari, Ali & Noory, Hamideh & Vazifedoust, Majid & Bahrami, Mahdi, 2018. "Estimating net irrigation requirement of winter wheat using model- and satellite-based single and basal crop coefficients," Agricultural Water Management, Elsevier, vol. 208(C), pages 95-106.
    10. Consoli, S. & Vanella, D., 2014. "Mapping crop evapotranspiration by integrating vegetation indices into a soil water balance model," Agricultural Water Management, Elsevier, vol. 143(C), pages 71-81.
    11. Pelosi, A. & Medina, H. & Villani, P. & D’Urso, G. & Chirico, G.B., 2016. "Probabilistic forecasting of reference evapotranspiration with a limited area ensemble prediction system," Agricultural Water Management, Elsevier, vol. 178(C), pages 106-118.
    12. Olivera-Guerra, Luis & Merlin, Olivier & Er-Raki, Salah & Khabba, Saïd & Escorihuela, Maria Jose, 2018. "Estimating the water budget components of irrigated crops: Combining the FAO-56 dual crop coefficient with surface temperature and vegetation index data," Agricultural Water Management, Elsevier, vol. 208(C), pages 120-131.
    13. Benli, Bogachan & Kodal, Suleyman & Ilbeyi, Adem & Ustun, Haluk, 2006. "Determination of evapotranspiration and basal crop coefficient of alfalfa with a weighing lysimeter," Agricultural Water Management, Elsevier, vol. 81(3), pages 358-370, March.
    14. Paco, T.A. & Ferreira, M.I. & Conceicao, N., 2006. "Peach orchard evapotranspiration in a sandy soil: Comparison between eddy covariance measurements and estimates by the FAO 56 approach," Agricultural Water Management, Elsevier, vol. 85(3), pages 305-313, October.
    15. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    16. Yang, Yang & Cui, Yuanlai & Luo, Yufeng & Lyu, Xinwei & Traore, Seydou & Khan, Shahbaz & Wang, Weiguang, 2016. "Short-term forecasting of daily reference evapotranspiration using the Penman-Monteith model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 177(C), pages 329-339.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abou Ali, Asma & Bouchaou, Lhoussaine & Er-Raki, Salah & Hssaissoune, Mohammed & Brouziyne, Youssef & Ezzahar, Jamal & Khabba, Saïd & Chakir, Adnane & Labbaci, Adnane & Chehbouni, Abdelghani, 2023. "Assessment of crop evapotranspiration and deep percolation in a commercial irrigated citrus orchard under semi-arid climate: Combined Eddy-Covariance measurement and soil water balance-based approach," Agricultural Water Management, Elsevier, vol. 275(C).
    2. Chen, Mengting & Cui, Yuanlai & Wang, Xiaonan & Xie, Hengwang & Liu, Fangping & Luo, Tongyuan & Zheng, Shizong & Luo, Yufeng, 2021. "A reinforcement learning approach to irrigation decision-making for rice using weather forecasts," Agricultural Water Management, Elsevier, vol. 250(C).
    3. Pelosi, A. & Chirico, G.B., 2021. "Regional assessment of daily reference evapotranspiration: Can ground observations be replaced by blending ERA5-Land meteorological reanalysis and CM-SAF satellite-based radiation data?," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Teixeira, Antônio & Leivas, Janice & Struiving, Tiago & Reis, João & Simão, Fúlvio, 2021. "Energy balance and irrigation performance assessments in lemon orchards by applying the SAFER algorithm to Landsat 8 images," Agricultural Water Management, Elsevier, vol. 247(C).
    5. Pelosi, A., 2023. "Performance of the Copernicus European Regional Reanalysis (CERRA) dataset as proxy of ground-based agrometeorological data," Agricultural Water Management, Elsevier, vol. 289(C).
    6. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teixeira, Antônio & Leivas, Janice & Struiving, Tiago & Reis, João & Simão, Fúlvio, 2021. "Energy balance and irrigation performance assessments in lemon orchards by applying the SAFER algorithm to Landsat 8 images," Agricultural Water Management, Elsevier, vol. 247(C).
    2. Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).
    3. Chen, Mengting & Cui, Yuanlai & Wang, Xiaonan & Xie, Hengwang & Liu, Fangping & Luo, Tongyuan & Zheng, Shizong & Luo, Yufeng, 2021. "A reinforcement learning approach to irrigation decision-making for rice using weather forecasts," Agricultural Water Management, Elsevier, vol. 250(C).
    4. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    5. Kaneko, Teruko & Gould, Nick & Campbell, David & Snelgar, Patrick & Clearwater, Michael J., 2022. "The effect of soil type, fruit load and shaded area on ‘Hass’ avocado (Persea americana Mill.) water use and crop coefficients," Agricultural Water Management, Elsevier, vol. 264(C).
    6. Yang, Yang & Cui, Yuanlai & Bai, Kaihua & Luo, Tongyuan & Dai, Junfeng & Wang, Weiguang & Luo, Yufeng, 2019. "Short-term forecasting of daily reference evapotranspiration using the reduced-set Penman-Monteith model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 211(C), pages 70-80.
    7. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    8. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    9. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    10. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    11. Seydou Traore & Yufeng Luo & Guy Fipps, 2017. "Gene-Expression Programming for Short-Term Forecasting of Daily Reference Evapotranspiration Using Public Weather Forecast Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4891-4908, December.
    12. Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Liu, Zhihe & Agathokleous, Evgenios & Yang, Xiumei & Hu, Wei & Clothier, Brent, 2023. "Short–term forecasting of daily evapotranspiration from rice using a modified Priestley–Taylor model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 277(C).
    13. Corbari, Chiara & Salerno, Raffaele & Ceppi, Alessandro & Telesca, Vito & Mancini, Marco, 2019. "Smart irrigation forecast using satellite LANDSAT data and meteo-hydrological modeling," Agricultural Water Management, Elsevier, vol. 212(C), pages 283-294.
    14. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    15. Mahmoud, Shereif H. & Gan, Thian Yew, 2019. "Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data," Agricultural Water Management, Elsevier, vol. 212(C), pages 35-47.
    16. Boyko, Kevin & Fernald, Alexander G. & Bawazir, A. Salim, 2021. "Improving groundwater recharge estimates in alfalfa fields of New Mexico with actual evapotranspiration measurements," Agricultural Water Management, Elsevier, vol. 244(C).
    17. Amazirh, Abdelhakim & Merlin, Olivier & Er-Raki, Salah & Bouras, Elhoussaine & Chehbouni, Abdelghani, 2021. "Implementing a new texture-based soil evaporation reduction coefficient in the FAO dual crop coefficient method," Agricultural Water Management, Elsevier, vol. 250(C).
    18. Abou Ali, Asma & Bouchaou, Lhoussaine & Er-Raki, Salah & Hssaissoune, Mohammed & Brouziyne, Youssef & Ezzahar, Jamal & Khabba, Saïd & Chakir, Adnane & Labbaci, Adnane & Chehbouni, Abdelghani, 2023. "Assessment of crop evapotranspiration and deep percolation in a commercial irrigated citrus orchard under semi-arid climate: Combined Eddy-Covariance measurement and soil water balance-based approach," Agricultural Water Management, Elsevier, vol. 275(C).
    19. Anderson, Ray G. & Alfieri, Joseph G. & Tirado-Corbalá, Rebecca & Gartung, Jim & McKee, Lynn G. & Prueger, John H. & Wang, Dong & Ayars, James E. & Kustas, William P., 2017. "Assessing FAO-56 dual crop coefficients using eddy covariance flux partitioning," Agricultural Water Management, Elsevier, vol. 179(C), pages 92-102.
    20. Yang, Yang & Luo, Yufeng & Wu, Conglin & Zheng, Hezhen & Zhang, Lei & Cui, Yuanlai & Sun, Ningning & Wang, Li, 2019. "Evaluation of six equations for daily reference evapotranspiration estimating using public weather forecast message for different climate regions across China," Agricultural Water Management, Elsevier, vol. 222(C), pages 386-399.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377419312491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.