IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v227y2020ics0378377419310352.html
   My bibliography  Save this article

Estimation of maize yield by assimilating biomass and canopy cover derived from hyperspectral data into the AquaCrop model

Author

Listed:
  • Jin, Xiuliang
  • Li, Zhenhai
  • Feng, Haikuan
  • Ren, Zhibin
  • Li, Shaokun

Abstract

The accurate and timely estimation of temporal and spatial changes in crop growth and yield before harvesting is essential for ensuring global food security. The integration of remote sensing data and crop models is a potential approach for the estimation of key crop growth parameters and crop yields. Therefore, the aim of this study was to assimilate biomass and canopy cover (CC) derived from vegetation indices into the AquaCrop model using the particle swarm optimization (PSO) algorithm in order to obtain a more accurate estimation of CC, biomass, and yield for maize. The results show that, compared to other vegetation indices, the enhanced vegetation index (EVI) and the three-band water index (TBWI) can be used to obtain a better estimation of CC (R2 = 0.78 and root-mean-square error (RMSE) =9.84%) and biomass (R2 = 0.76 and RMSE = 2.84 ton/ha), respectively. Additionally, it was found that the data assimilation approaches in which only CC was used as a state variable (scheme SVcc) and only biomass was used as a state variable (scheme SVbio) can be used to obtain more accurate estimations of CC (R2 = 0.83 and RMSE = 8.12%) and biomass (R2 = 0.81 and RMSE = 2.51 ton/ha), respectively; however, larger differences were found between the measured and estimated values of one variable (i.e., CC or biomass) when the other variable (i.e., biomass or CC) was used as the only state variable during the data assimilation. The data assimilation approach in which both CC and biomass were used as state variables (scheme SVcc+bio) produced a robust result, with the estimation accuracy being fairly close to that obtained using the single-variable (SVcc or SVbio) data assimilation approaches. The estimation accuracy for maize yield was slightly better when using a double-variable data assimilation approach (R2 = 0.78 and RMSE = 1.44 ton/ha) than when using a single-variable data assimilation approach. In summary, this study presents a robust approach for increasing the estimation accuracy for maize CC, biomass, and yield, and for optimizing field management strategies, by assimilating remote sensing data into the AquaCrop model at a regional scale.

Suggested Citation

  • Jin, Xiuliang & Li, Zhenhai & Feng, Haikuan & Ren, Zhibin & Li, Shaokun, 2020. "Estimation of maize yield by assimilating biomass and canopy cover derived from hyperspectral data into the AquaCrop model," Agricultural Water Management, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:agiwat:v:227:y:2020:i:c:s0378377419310352
    DOI: 10.1016/j.agwat.2019.105846
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419310352
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105846?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, J. W. & Jones, J. W., 2000. "Scaling-up crop models for climate variability applications," Agricultural Systems, Elsevier, vol. 65(1), pages 43-72, July.
    2. Xiu-liang Jin & Wan-ying Diao & Chun-hua Xiao & Fang-yong Wang & Bing Chen & Ke-ru Wang & Shao-kun Li, 2013. "Estimation of Wheat Agronomic Parameters using New Spectral Indices," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
    3. Nendel, C. & Berg, M. & Kersebaum, K.C. & Mirschel, W. & Specka, X. & Wegehenkel, M. & Wenkel, K.O. & Wieland, R., 2011. "The MONICA model: Testing predictability for crop growth, soil moisture and nitrogen dynamics," Ecological Modelling, Elsevier, vol. 222(9), pages 1614-1625.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linker, Raphael & Kisekka, Isaya, 2022. "Concurrent data assimilation and model-based optimization of irrigation scheduling," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    3. Liu, Xiao & Yang, Dawen, 2021. "Irrigation schedule analysis and optimization under the different combination of P and ET0 using a spatially distributed crop model," Agricultural Water Management, Elsevier, vol. 256(C).
    4. Lu, Yang & Wei, Chunzhu & McCabe, Matthew F. & Sheffield, Justin, 2022. "Multi-variable assimilation into a modified AquaCrop model for improved maize simulation without management or crop phenology information," Agricultural Water Management, Elsevier, vol. 266(C).
    5. Avargani, Habib Karimi & Hashemy Shahdany, S. Mehdy & Kamrani, Kazem & Maestre, Jose, M. & Hashemi Garmdareh, S. Ebrahim & Liaghat, Abdolmajid, 2022. "Prioritization of surface water distribution in irrigation districts to mitigate crop yield reduction during water scarcity," Agricultural Water Management, Elsevier, vol. 269(C).
    6. Lu, Yang & Chibarabada, Tendai P. & Ziliani, Matteo G. & Onema, Jean-Marie Kileshye & McCabe, Matthew F. & Sheffield, Justin, 2021. "Assimilation of soil moisture and canopy cover data improves maize simulation using an under-calibrated crop model," Agricultural Water Management, Elsevier, vol. 252(C).
    7. Luo, Li & Sun, Shikun & Xue, Jing & Gao, Zihan & Zhao, Jinfeng & Yin, Yali & Gao, Fei & Luan, Xiaobo, 2023. "Crop yield estimation based on assimilation of crop models and remote sensing data: A systematic evaluation," Agricultural Systems, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tenreiro, Tomás R. & García-Vila, Margarita & Gómez, José A. & Jimenez-Berni, José A. & Fereres, Elías, 2020. "Water modelling approaches and opportunities to simulate spatial water variations at crop field level," Agricultural Water Management, Elsevier, vol. 240(C).
    2. Finger, Robert, 2012. "Biases in Farm-Level Yield Risk Analysis due to Data Aggregation," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(01), pages 1-14, February.
    3. Hampf, Anna C. & Carauta, Marcelo & Latynskiy, Evgeny & Libera, Affonso A.D. & Monteiro, Leonardo & Sentelhas, Paulo & Troost, Christian & Berger, Thomas & Nendel, Claas, 2018. "The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 165(C), pages 1-13.
    4. Mohamed Elgharib Gomah & Guichen Li & Naseer Muhammad Khan & Changlun Sun & Jiahui Xu & Ahmed A. Omar & B. G. Mousa & Marzouk Mohamed Aly Abdelhamid & M. M. Zaki, 2022. "Prediction of Strength Parameters of Thermally Treated Egyptian Granodiorite Using Multivariate Statistics and Machine Learning Techniques," Mathematics, MDPI, vol. 10(23), pages 1-21, November.
    5. Michael Kuhwald & Katja Dörnhöfer & Natascha Oppelt & Rainer Duttmann, 2018. "Spatially Explicit Soil Compaction Risk Assessment of Arable Soils at Regional Scale: The SaSCiA-Model," Sustainability, MDPI, vol. 10(5), pages 1-29, May.
    6. Carauta, Marcelo & Troost, Christian & Guzman-Bustamante, Ivan & Hampf, Anna & Libera, Affonso & Meurer, Katharina & Bönecke, Eric & Franko, Uwe & Ribeiro Rodrigues, Renato de Aragão & Berger, Thomas, 2021. "Climate-related land use policies in Brazil: How much has been achieved with economic incentives in agriculture?," Land Use Policy, Elsevier, vol. 109(C).
    7. Mavromatis, T., 2016. "Spatial resolution effects on crop yield forecasts: An application to rainfed wheat yield in north Greece with CERES-Wheat," Agricultural Systems, Elsevier, vol. 143(C), pages 38-48.
    8. Podesta, Guillermo & Letson, David & Messina, Carlos & Royce, Fred & Ferreyra, R. Andres & Jones, James & Hansen, James & Llovet, Ignacio & Grondona, Martin & O'Brien, James J., 2002. "Use of ENSO-related climate information in agricultural decision making in Argentina: a pilot experience," Agricultural Systems, Elsevier, vol. 74(3), pages 371-392, December.
    9. Bezuidenhout, C.N. & Singels, A., 2007. "Operational forecasting of South African sugarcane production: Part 2 - System evaluation," Agricultural Systems, Elsevier, vol. 92(1-3), pages 39-51, January.
    10. James Watson & Andrew Challinor & Thomas Fricker & Christopher Ferro, 2015. "Comparing the effects of calibration and climate errors on a statistical crop model and a process-based crop model," Climatic Change, Springer, vol. 132(1), pages 93-109, September.
    11. Quiroga, Sonia & Iglesias, Ana, 2009. "A comparison of the climate risks of cereal, citrus, grapevine and olive production in Spain," Agricultural Systems, Elsevier, vol. 101(1-2), pages 91-100, June.
    12. Zhao, Quanying & Brocks, Sebastian & Lenz-Wiedemann, Victoria I.S. & Miao, Yuxin & Zhang, Fusuo & Bareth, Georg, 2017. "Detecting spatial variability of paddy rice yield by combining the DNDC model with high resolution satellite images," Agricultural Systems, Elsevier, vol. 152(C), pages 47-57.
    13. Bezuidenhout, C.N. & Singels, A., 2007. "Operational forecasting of South African sugarcane production: Part 1 - System description," Agricultural Systems, Elsevier, vol. 92(1-3), pages 23-38, January.
    14. Kar, Gouranga & Verma, H.N., 2005. "Climatic water balance, probable rainfall, rice crop water requirements and cold periods in AER 12.0 in India," Agricultural Water Management, Elsevier, vol. 72(1), pages 15-32, March.
    15. Schlindwein, Sandro L. & Eulenstein, Frank & Lana, Marcos & Sieber, Stefan & Boulanger, Jean-Philippe & Guevara, Edgardo & Meira, Santiago & Gentile, Elvira & Bonatti, Michelle, 2015. "What Can Be Learned about the Adaptation Process of Farming Systems to Climate Dynamics Using Crop Models?," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 4(4).
    16. Balkovič, Juraj & van der Velde, Marijn & Schmid, Erwin & Skalský, Rastislav & Khabarov, Nikolay & Obersteiner, Michael & Stürmer, Bernhard & Xiong, Wei, 2013. "Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation," Agricultural Systems, Elsevier, vol. 120(C), pages 61-75.
    17. Adam, M. & Van Bussel, L.G.J. & Leffelaar, P.A. & Van Keulen, H. & Ewert, F., 2011. "Effects of modelling detail on simulated potential crop yields under a wide range of climatic conditions," Ecological Modelling, Elsevier, vol. 222(1), pages 131-143.
    18. van Ittersum, Martin K. & Ewert, Frank & Heckelei, Thomas & Wery, Jacques & Alkan Olsson, Johanna & Andersen, Erling & Bezlepkina, Irina & Brouwer, Floor & Donatelli, Marcello & Flichman, Guillermo & , 2008. "Integrated assessment of agricultural systems - A component-based framework for the European Union (SEAMLESS)," Agricultural Systems, Elsevier, vol. 96(1-3), pages 150-165, March.
    19. Carauta, Marcelo & Parussis, Julia & Hampf, Anna & Libera, Affonso & Berger, Thomas, 2021. "No more double cropping in Mato Grosso, Brazil? Evaluating the potential impact of climate change on the profitability of farm systems," Agricultural Systems, Elsevier, vol. 190(C).
    20. Anubhab Pattanayak & K. S. Kavi Kumar, "undated". "Does Weather Sensitivity of Rice Yield Vary Across Regions? Evidence from Eastern and Southern India," Working Papers 2017-162, Madras School of Economics,Chennai,India.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:227:y:2020:i:c:s0378377419310352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.