IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v269y2022ics0378377422002001.html
   My bibliography  Save this article

Prioritization of surface water distribution in irrigation districts to mitigate crop yield reduction during water scarcity

Author

Listed:
  • Avargani, Habib Karimi
  • Hashemy Shahdany, S. Mehdy
  • Kamrani, Kazem
  • Maestre, Jose, M.
  • Hashemi Garmdareh, S. Ebrahim
  • Liaghat, Abdolmajid

Abstract

The vulnerability of conventional operational systems in agricultural water distribution systems becomes controversial under successive water shortages. Accordingly, inadequate, unfair, and unreliable surface water distribution has led to crop yield reduction and economic damage. To address these issues, a novel configuration of an automated operating system was developed to mitigate crop yield reductions during times of water scarcity. Using centralized model predictive control (CMPC), an automatedwater distribution control system was developed in MATLAB version (2018a) and integrated with the Aquacrop model to provide an intelligent daily water distribution prioritization within irrigation districts. This study also investigated technical and environmental perspectives in enriching the resilience of agricultural water distribution systems influenced by the water shortage periods. A controversial irrigation district located in central Iran was selected as the test case located in a basin where reported socio-economic and environmental concerns are among the highest in Iran. Application of the developed configuration of the CMPC led to 4.1%, 5.7%, 5.6%, and 7.3%, increasing the crop yield under the water shortage scenarios of 15%, 20%, 25%, and 30%, respectively. Likewise, employing the intelligent operation led to the economic benefit of 8.5, 11.3, 11.9, and 16.8 M US$ by conserving crop production of 3841.4, 5104.8, 5367.6, and 7543.0 tons, respectively, under the scenarios as mentioned above. The proposed method enables water authorities to promote the surface water distribution system in practical, implementable, and step-by-step planning to increase individual and public profits and environmental achievements by reducing water extraction from tube-wells based on the actual water demand potential.

Suggested Citation

  • Avargani, Habib Karimi & Hashemy Shahdany, S. Mehdy & Kamrani, Kazem & Maestre, Jose, M. & Hashemi Garmdareh, S. Ebrahim & Liaghat, Abdolmajid, 2022. "Prioritization of surface water distribution in irrigation districts to mitigate crop yield reduction during water scarcity," Agricultural Water Management, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002001
    DOI: 10.1016/j.agwat.2022.107653
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422002001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibrakhimov, Mirzakhayot & Awan, Usman Khalid & George, Biju & Liaqat, Umar Waqas, 2018. "Understanding surface water–groundwater interactions for managing large irrigation schemes in the multi-country Fergana valley, Central Asia," Agricultural Water Management, Elsevier, vol. 201(C), pages 99-106.
    2. Han, Congying & Zhang, Baozhong & Chen, He & Liu, Yu & Wei, Zheng, 2020. "Novel approach of upscaling the FAO AquaCrop model into regional scale by using distributed crop parameters derived from remote sensing data," Agricultural Water Management, Elsevier, vol. 240(C).
    3. Sara Azargashb Lord & Seied Mehdy Hashemy Shahdany & Abbas Roozbahani, 2021. "Minimization of Operational and Seepage Losses in Agricultural Water Distribution Systems Using the Ant Colony Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 827-846, February.
    4. Hassani, Yousef & Hashemy Shahdany, Seied Mehdy & Maestre, J.M. & Zahraie, Banafsheh & Ghorbani, Mohammad & Henneberry, Shida Rastegari & Kulshreshtha, Suren N., 2019. "An economic-operational framework for optimum agricultural water distribution in irrigation districts without water marketing," Agricultural Water Management, Elsevier, vol. 221(C), pages 348-361.
    5. S. Hashemy Shahdany & J. Maestre & P. van Overloop, 2015. "Equitable Water Distribution in Main Irrigation Canals with Constrained Water Supply," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3315-3328, July.
    6. Kamrani, Kazem & Roozbahani, Abbas & Hashemy Shahdany, Seied Mehdy, 2020. "Using Bayesian networks to evaluate how agricultural water distribution systems handle the water-food-energy nexus," Agricultural Water Management, Elsevier, vol. 239(C).
    7. Hashemy Shahdany, S. Mehdy & Firoozfar, Alireza & Maestre, J.M. & Mallakpour, Iman & Taghvaeian, Saleh & Karimi, Poolad, 2018. "Operational performance improvements in irrigation canals to overcome groundwater overexploitation," Agricultural Water Management, Elsevier, vol. 204(C), pages 234-246.
    8. Yaltaghian Khiabani, M. & Hashamy Shahadany, S.M. & Maestre, J.M. & Stepanian, R. & Mallakpour, I., 2020. "Potential assessment of non-automatic and automatic modernization alternatives for the improvement of water distribution supplied by surface-water resources: A case study in Iran," Agricultural Water Management, Elsevier, vol. 230(C).
    9. Jin, Xiuliang & Li, Zhenhai & Feng, Haikuan & Ren, Zhibin & Li, Shaokun, 2020. "Estimation of maize yield by assimilating biomass and canopy cover derived from hyperspectral data into the AquaCrop model," Agricultural Water Management, Elsevier, vol. 227(C).
    10. Barkhordari, Soroush & Hashemy Shahdany, Seied Mehdy, 2021. "Developing a smart operating system for fairly distribution of irrigation water, based on social, economic, and environmental considerations," Agricultural Water Management, Elsevier, vol. 250(C).
    11. S. M. Hashemy Shahdany & A. R. Firoozfar, 2017. "Providing a Reliable Water Level Control in Main Canals under Significant Inflow Fluctuations at Drought Periods within Canal Automation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3343-3354, September.
    12. Adeboye, Omotayo B. & Schultz, Bart & Adekalu, Kenneth O. & Prasad, Krishna C., 2019. "Performance evaluation of AquaCrop in simulating soil water storage, yield, and water productivity of rainfed soybeans (Glycine max L. merr) in Ile-Ife, Nigeria," Agricultural Water Management, Elsevier, vol. 213(C), pages 1130-1146.
    13. Morteza Babaei & Abbas Roozbahani & S. Mehdy Hashemy Shahdany, 2018. "Risk Assessment of Agricultural Water Conveyance and Delivery Systems by Fuzzy Fault Tree Analysis Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 4079-4101, September.
    14. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
    15. Cunha, Henrique & Loureiro, Dália & Sousa, Gonçalo & Covas, Dídia & Alegre, Helena, 2019. "A comprehensive water balance methodology for collective irrigation systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    16. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Zheli & Guan, Guanghua & Wang, Kang, 2023. "Distributed model predictive control based on the alternating direction method of multipliers for branching open canal irrigation systems," Agricultural Water Management, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barkhordari, Soroush & Hashemy Shahdany, Seied Mehdy, 2021. "Developing a smart operating system for fairly distribution of irrigation water, based on social, economic, and environmental considerations," Agricultural Water Management, Elsevier, vol. 250(C).
    2. Afsaneh Kaghazchi & Seied Mehdy Hashemy Shahdany & Alireza Firoozfar, 2022. "Prioritization of agricultural water distribution operating systems based on the sustainable development indicators," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 23-40, February.
    3. Karimi Avargani, Habib & Hashemy Shahdany, S. Mehdy & Hashemi Garmdareh, S. Ebrahim & Liaghat, Abdolmajid & Guan, Guanghua & Behzadi, Farhad & Milan, Sami Ghordoyee & Berndtsson, Ronny, 2023. "Operational loss estimation in irrigation canals by integrating hydraulic simulation and crop growth modeling," Agricultural Water Management, Elsevier, vol. 288(C).
    4. Jolfan, Mohsen Hosseini & Hashemy Shahdany, S. Mehdy & Javadi, Saman & Milan, Sami Ghordoyee & Neshat, Aminreza & Berndtsson, Ronny & Tork, Hamed, 2023. "Modernization in agricultural water distribution system for aquifer storage and recovery – A case study," Agricultural Water Management, Elsevier, vol. 282(C).
    5. Kaghazchi, Afsaneh & Hashemy Shahdany, S. Mehdy & Roozbahani, Abbas, 2021. "Simulation and evaluation of agricultural water distribution and delivery systems with a Hybrid Bayesian network model," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Hassani, Yousef & Hashemy Shahdany, Seied Mehdy & Maestre, J.M. & Zahraie, Banafsheh & Ghorbani, Mohammad & Henneberry, Shida Rastegari & Kulshreshtha, Suren N., 2019. "An economic-operational framework for optimum agricultural water distribution in irrigation districts without water marketing," Agricultural Water Management, Elsevier, vol. 221(C), pages 348-361.
    7. Mao, Wei & Zhu, Yan & Huang, Shuang & Han, Xudong & Sun, Guanfang & Ye, Ming & Yang, Jinzhong, 2024. "Assessment of spatial and temporal seepage losses in large canal systems under current and future water-saving conditions: A case study in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 291(C).
    8. Yao, Liming & Li, Yalan & Chen, Xudong, 2021. "A robust water-food-land nexus optimization model for sustainable agricultural development in the Yangtze River Basin," Agricultural Water Management, Elsevier, vol. 256(C).
    9. Kamrani, Kazem & Roozbahani, Abbas & Hashemy Shahdany, Seied Mehdy, 2020. "Using Bayesian networks to evaluate how agricultural water distribution systems handle the water-food-energy nexus," Agricultural Water Management, Elsevier, vol. 239(C).
    10. Habibeh Sharifi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2021. "Evaluating the Performance of Agricultural Water Distribution Systems Using FIS, ANN and ANFIS Intelligent Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1797-1816, April.
    11. Yaltaghian Khiabani, M. & Hashamy Shahadany, S.M. & Maestre, J.M. & Stepanian, R. & Mallakpour, I., 2020. "Potential assessment of non-automatic and automatic modernization alternatives for the improvement of water distribution supplied by surface-water resources: A case study in Iran," Agricultural Water Management, Elsevier, vol. 230(C).
    12. Mirzaie, Nargis & Banihabib, Mohammad Ebrahim & shahdany, S. Mehdy hashemy & Randhir, Timothy O., 2021. "Fuzzy particle swarm optimization for conjunctive use of groundwater and reclaimed wastewater under uncertainty," Agricultural Water Management, Elsevier, vol. 256(C).
    13. Liu, Xiao & Yang, Dawen, 2021. "Irrigation schedule analysis and optimization under the different combination of P and ET0 using a spatially distributed crop model," Agricultural Water Management, Elsevier, vol. 256(C).
    14. Atiyeh Bozorgi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany & Rouzbeh Abbassi, 2021. "Development of Multi-Hazard Risk Assessment Model for Agricultural Water Supply and Distribution Systems Using Bayesian Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3139-3159, August.
    15. Fatemeh Bayat & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2022. "Performance Evaluation of Agricultural Surface Water Distribution Systems Based on Water-food-energy Nexus and Using AHP-Entropy-WASPAS Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4697-4720, September.
    16. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    17. Penglong Wang & Yao Wei & Fanglei Zhong & Xiaoyu Song & Bao Wang & Qinhua Wang, 2022. "Evaluation of Agricultural Water Resources Carrying Capacity and Its Influencing Factors: A Case Study of Townships in the Arid Region of Northwest China," Agriculture, MDPI, vol. 12(5), pages 1-24, May.
    18. Nazemi, Neda & Foley, Rider W. & Louis, Garrick & Keeler, Lauren Withycombe, 2020. "Divergent agricultural water governance scenarios: The case of Zayanderud basin, Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    19. Huarui Gong & Jing Li & Zhen Liu & Yitao Zhang & Ruixing Hou & Zhu Ouyang, 2022. "Mitigated Greenhouse Gas Emissions in Cropping Systems by Organic Fertilizer and Tillage Management," Land, MDPI, vol. 11(7), pages 1-18, July.
    20. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.