IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v92y2007i1-3p23-38.html
   My bibliography  Save this article

Operational forecasting of South African sugarcane production: Part 1 - System description

Author

Listed:
  • Bezuidenhout, C.N.
  • Singels, A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Bezuidenhout, C.N. & Singels, A., 2007. "Operational forecasting of South African sugarcane production: Part 1 - System description," Agricultural Systems, Elsevier, vol. 92(1-3), pages 23-38, January.
  • Handle: RePEc:eee:agisys:v:92:y:2007:i:1-3:p:23-38
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(06)00015-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Everingham, Y. L. & Muchow, R. C. & Stone, R. C. & Inman-Bamber, N. G. & Singels, A. & Bezuidenhout, C. N., 2002. "Enhanced risk management and decision-making capability across the sugarcane industry value chain based on seasonal climate forecasts," Agricultural Systems, Elsevier, vol. 74(3), pages 459-477, December.
    2. Horie, T. & Yajima, M. & Nakagawa, H., 1992. "Yield forecasting," Agricultural Systems, Elsevier, vol. 40(1-3), pages 211-236.
    3. de Jager, J. M. & Potgieter, A. B. & van den Berg, W. J., 1998. "Framework for forecasting the extent and severity of drought in maize in the Free State Province of South Africa," Agricultural Systems, Elsevier, vol. 57(3), pages 351-365, July.
    4. Hansen, J. W. & Jones, J. W., 2000. "Scaling-up crop models for climate variability applications," Agricultural Systems, Elsevier, vol. 65(1), pages 43-72, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pagani, Valentina & Stella, Tommaso & Guarneri, Tommaso & Finotto, Giacomo & van den Berg, Maurits & Marin, Fabio Ricardo & Acutis, Marco & Confalonieri, Roberto, 2017. "Forecasting sugarcane yields using agro-climatic indicators and Canegro model: A case study in the main production region in Brazil," Agricultural Systems, Elsevier, vol. 154(C), pages 45-52.
    2. van der Velde, Marijn & Biavetti, Irene & El-Aydam, Mohamed & Niemeyer, Stefan & Santini, Fabien & van den Berg, Maurits, 2019. "Use and relevance of European Union crop monitoring and yield forecasts," Agricultural Systems, Elsevier, vol. 168(C), pages 224-230.
    3. Le Gal, P.-Y. & Lyne, P.W.L. & Meyer, E. & Soler, L.-G., 2008. "Impact of sugarcane supply scheduling on mill sugar production: A South African case study," Agricultural Systems, Elsevier, vol. 96(1-3), pages 64-74, March.
    4. Piewthongngam, Kullapapruk & Pathumnakul, Supachai & Setthanan, Kanchana, 2009. "Application of crop growth simulation and mathematical modeling to supply chain management in the Thai sugar industry," Agricultural Systems, Elsevier, vol. 102(1-3), pages 58-66, October.
    5. Jones, M.R. & Singels, A., 2015. "Analysing yield trends in the South African sugar industry," Agricultural Systems, Elsevier, vol. 141(C), pages 24-35.
    6. Bocca, Felipe Ferreira & Rodrigues, Luiz Henrique Antunes & Arraes, Nilson Antonio Modesto, 2015. "When do I want to know and why? Different demands on sugarcane yield predictions," Agricultural Systems, Elsevier, vol. 135(C), pages 48-56.
    7. Pagani, Valentina & Guarneri, Tommaso & Busetto, Lorenzo & Ranghetti, Luigi & Boschetti, Mirco & Movedi, Ermes & Campos-Taberner, Manuel & Garcia-Haro, Francisco Javier & Katsantonis, Dimitrios & Stav, 2019. "A high-resolution, integrated system for rice yield forecasting at district level," Agricultural Systems, Elsevier, vol. 168(C), pages 181-190.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bezuidenhout, C.N. & Singels, A., 2007. "Operational forecasting of South African sugarcane production: Part 2 - System evaluation," Agricultural Systems, Elsevier, vol. 92(1-3), pages 39-51, January.
    2. Piewthongngam, Kullapapruk & Pathumnakul, Supachai & Setthanan, Kanchana, 2009. "Application of crop growth simulation and mathematical modeling to supply chain management in the Thai sugar industry," Agricultural Systems, Elsevier, vol. 102(1-3), pages 58-66, October.
    3. World Bank, 2010. "Improving Water Management in Rainfed Agriculture : Issues and Options in Water-Constrained Production Systems," World Bank Publications - Reports 13028, The World Bank Group.
    4. Hong Wu & Donald Wilhite, 2004. "An Operational Agricultural Drought Risk Assessment Model for Nebraska, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(1), pages 1-21, September.
    5. Mark Jury, 2013. "Climate prediction experiences in southern Africa 1990–2005 and key outcomes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1883-1894, February.
    6. Finger, Robert, 2012. "Biases in Farm-Level Yield Risk Analysis due to Data Aggregation," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(01), pages 1-14, February.
    7. Ziaei, A. N. & Sepaskhah, A. R., 2003. "Model for simulation of winter wheat yield under dryland and irrigated conditions," Agricultural Water Management, Elsevier, vol. 58(1), pages 1-17, January.
    8. Meinke, H. & Baethgen, W. E. & Carberry, P. S. & Donatelli, M. & Hammer, G. L. & Selvaraju, R. & Stockle, C. O., 2001. "Increasing profits and reducing risks in crop production using participatory systems simulation approaches," Agricultural Systems, Elsevier, vol. 70(2-3), pages 493-513.
    9. Mavromatis, T., 2016. "Spatial resolution effects on crop yield forecasts: An application to rainfed wheat yield in north Greece with CERES-Wheat," Agricultural Systems, Elsevier, vol. 143(C), pages 38-48.
    10. Hansen, J. W. & Jones, J. W., 2000. "Scaling-up crop models for climate variability applications," Agricultural Systems, Elsevier, vol. 65(1), pages 43-72, July.
    11. Podesta, Guillermo & Letson, David & Messina, Carlos & Royce, Fred & Ferreyra, R. Andres & Jones, James & Hansen, James & Llovet, Ignacio & Grondona, Martin & O'Brien, James J., 2002. "Use of ENSO-related climate information in agricultural decision making in Argentina: a pilot experience," Agricultural Systems, Elsevier, vol. 74(3), pages 371-392, December.
    12. Pagani, Valentina & Stella, Tommaso & Guarneri, Tommaso & Finotto, Giacomo & van den Berg, Maurits & Marin, Fabio Ricardo & Acutis, Marco & Confalonieri, Roberto, 2017. "Forecasting sugarcane yields using agro-climatic indicators and Canegro model: A case study in the main production region in Brazil," Agricultural Systems, Elsevier, vol. 154(C), pages 45-52.
    13. Stewart-Koster, Ben & Dieu Anh, Nguyen & Burford, Michele A. & Condon, Jason & Qui, Nguyen Van & Hiep, Le Huu & Bay, Doan Van & Sammut, Jesmond, 2017. "Expert based model building to quantify risk factors in a combined aquaculture-agriculture system," Agricultural Systems, Elsevier, vol. 157(C), pages 230-240.
    14. James Watson & Andrew Challinor & Thomas Fricker & Christopher Ferro, 2015. "Comparing the effects of calibration and climate errors on a statistical crop model and a process-based crop model," Climatic Change, Springer, vol. 132(1), pages 93-109, September.
    15. Quiroga, Sonia & Iglesias, Ana, 2009. "A comparison of the climate risks of cereal, citrus, grapevine and olive production in Spain," Agricultural Systems, Elsevier, vol. 101(1-2), pages 91-100, June.
    16. Zhao, Quanying & Brocks, Sebastian & Lenz-Wiedemann, Victoria I.S. & Miao, Yuxin & Zhang, Fusuo & Bareth, Georg, 2017. "Detecting spatial variability of paddy rice yield by combining the DNDC model with high resolution satellite images," Agricultural Systems, Elsevier, vol. 152(C), pages 47-57.
    17. Kar, Gouranga & Verma, H.N., 2005. "Climatic water balance, probable rainfall, rice crop water requirements and cold periods in AER 12.0 in India," Agricultural Water Management, Elsevier, vol. 72(1), pages 15-32, March.
    18. Pagani, Valentina & Guarneri, Tommaso & Busetto, Lorenzo & Ranghetti, Luigi & Boschetti, Mirco & Movedi, Ermes & Campos-Taberner, Manuel & Garcia-Haro, Francisco Javier & Katsantonis, Dimitrios & Stav, 2019. "A high-resolution, integrated system for rice yield forecasting at district level," Agricultural Systems, Elsevier, vol. 168(C), pages 181-190.
    19. Schlindwein, Sandro L. & Eulenstein, Frank & Lana, Marcos & Sieber, Stefan & Boulanger, Jean-Philippe & Guevara, Edgardo & Meira, Santiago & Gentile, Elvira & Bonatti, Michelle, 2015. "What Can Be Learned about the Adaptation Process of Farming Systems to Climate Dynamics Using Crop Models?," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 4(4).
    20. Balkovič, Juraj & van der Velde, Marijn & Schmid, Erwin & Skalský, Rastislav & Khabarov, Nikolay & Obersteiner, Michael & Stürmer, Bernhard & Xiong, Wei, 2013. "Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation," Agricultural Systems, Elsevier, vol. 120(C), pages 61-75.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:92:y:2007:i:1-3:p:23-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.