Assimilation of soil moisture and canopy cover data improves maize simulation using an under-calibrated crop model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2021.106884
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
- Li, Yan & Zhou, Qingguo & Zhou, Jian & Zhang, Gaofeng & Chen, Chong & Wang, Jing, 2014. "Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions," Ecological Modelling, Elsevier, vol. 291(C), pages 15-27.
- Foster, T. & Brozović, N. & Butler, A.P. & Neale, C.M.U. & Raes, D. & Steduto, P. & Fereres, E. & Hsiao, T.C., 2017. "AquaCrop-OS: An open source version of FAO's crop water productivity model," Agricultural Water Management, Elsevier, vol. 181(C), pages 18-22.
- Sandhu, Rupinder & Irmak, Suat, 2019. "Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed cond," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
- Jin, Xiuliang & Li, Zhenhai & Feng, Haikuan & Ren, Zhibin & Li, Shaokun, 2020. "Estimation of maize yield by assimilating biomass and canopy cover derived from hyperspectral data into the AquaCrop model," Agricultural Water Management, Elsevier, vol. 227(C).
- Bouman, B. A. M. & van Keulen, H. & van Laar, H. H. & Rabbinge, R., 1996. "The `School of de Wit' crop growth simulation models: A pedigree and historical overview," Agricultural Systems, Elsevier, vol. 52(2-3), pages 171-198.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Linker, Raphael & Kisekka, Isaya, 2022. "Concurrent data assimilation and model-based optimization of irrigation scheduling," Agricultural Water Management, Elsevier, vol. 274(C).
- Lu, Yang & Wei, Chunzhu & McCabe, Matthew F. & Sheffield, Justin, 2022. "Multi-variable assimilation into a modified AquaCrop model for improved maize simulation without management or crop phenology information," Agricultural Water Management, Elsevier, vol. 266(C).
- Li, Xuemin & Zhang, Jingwen & Cai, Ximing & Huo, Zailin & Zhang, Chenglong, 2023. "Simulation-optimization based real-time irrigation scheduling: A human-machine interactive method enhanced by data assimilation," Agricultural Water Management, Elsevier, vol. 276(C).
- Corbari, Chiara & Gabrieli, Davide & Furlan, Lorenzo & Furlanetto, Jacopo & Skokovic, Drazen & Sobrino, Josè & Morari, Francesco, 2024. "Optimizing variable rate irrigation using model and satellite-based dynamic prescription maps," Agricultural Water Management, Elsevier, vol. 299(C).
- Wang, Yongqiang & Huang, Donghua & Sun, Kexin & Shen, Hongzheng & Xing, Xuguang & Liu, Xiao & Ma, Xiaoyi, 2023. "Multiobjective optimization of regional irrigation and nitrogen schedules by using the CERES-Maize model with crop parameters determined from the remotely sensed leaf area index," Agricultural Water Management, Elsevier, vol. 286(C).
- He, Liuyue & Xue, Jingyuan & Wang, Sufen, 2023. "WHCrop: A novel water-heat driven crop model for estimating the spatiotemporal dynamics of crop growth for arid region," Agricultural Water Management, Elsevier, vol. 287(C).
- Emmanuel Lekakis & Athanasios Zaikos & Alexios Polychronidis & Christos Efthimiou & Ioannis Pourikas & Theano Mamouka, 2022. "Evaluation of Different Modelling Techniques with Fusion of Satellite, Soil and Agro-Meteorological Data for the Assessment of Durum Wheat Yield under a Large Scale Application," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
- Wang, Weishu & Rong, Yao & Zhang, Chenglong & Wang, Chaozi & Huo, Zailin, 2024. "Data assimilation of soil moisture and leaf area index effectively improves the simulation accuracy of water and carbon fluxes in coupled farmland hydrological model," Agricultural Water Management, Elsevier, vol. 291(C).
- Corbari, C. & Ben Charfi, I. & Al Bitar, A. & Skokovic, D. & Sobrino, J.A. & Perelli, C. & Branca, G. & Mancini, M., 2022. "A fully coupled crop-water-energy balance model based on satellite data for maize and tomato crops yield estimates: The FEST-EWB-SAFY model," Agricultural Water Management, Elsevier, vol. 272(C).
- Luo, Li & Sun, Shikun & Xue, Jing & Gao, Zihan & Zhao, Jinfeng & Yin, Yali & Gao, Fei & Luan, Xiaobo, 2023. "Crop yield estimation based on assimilation of crop models and remote sensing data: A systematic evaluation," Agricultural Systems, Elsevier, vol. 210(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lu, Yang & Wei, Chunzhu & McCabe, Matthew F. & Sheffield, Justin, 2022. "Multi-variable assimilation into a modified AquaCrop model for improved maize simulation without management or crop phenology information," Agricultural Water Management, Elsevier, vol. 266(C).
- Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
- Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
- Cheng, Minghui & Wang, Haidong & Fan, Junliang & Xiang, Youzhen & Liu, Xiaoqiang & Liao, Zhenqi & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun, 2022. "Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies," Agricultural Water Management, Elsevier, vol. 274(C).
- Irmak, S. & Sandhu, R. & Kukal, M.S., 2022. "Multi-model projections of trade-offs between irrigated and rainfed maize yields under changing climate and future emission scenarios," Agricultural Water Management, Elsevier, vol. 261(C).
- Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).
- Kelly, T.D. & Foster, T. & Schultz, David M., 2023. "Assessing the value of adapting irrigation strategies within the season," Agricultural Water Management, Elsevier, vol. 275(C).
- Alex Zizinga & Jackson Gilbert Majaliwa Mwanjalolo & Britta Tietjen & Bobe Bedadi & Ramon Amaro de Sales & Dennis Beesigamukama, 2022. "Simulating Maize Productivity under Selected Climate Smart Agriculture Practices Using AquaCrop Model in a Sub-humid Environment," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
- Lescourret, F. & Blecher, N. & Habib, R. & Chadoeuf, J. & Agostini, D. & Pailly, O. & Vaissiere, B. & Poggi, I., 1999. "Development of a simulation model for studying kiwi fruit orchard management," Agricultural Systems, Elsevier, vol. 59(2), pages 215-239, February.
- Tsakmakis, I.D. & Gikas, G.D. & Sylaios, G.K., 2021. "Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize," Agricultural Water Management, Elsevier, vol. 255(C).
- Dzikiti, S. & Lotter, D. & Mpandeli, S. & Nhamo, L., 2022. "Assessing the energy and water balance dynamics of rain-fed rooibos tea crops (Aspalathus linearis) under changing Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 274(C).
- Adam, M. & Wery, J. & Leffelaar, P.A. & Ewert, F. & Corbeels, M. & Van Keulen, H., 2013. "A systematic approach for re-assembly of crop models: An example to simulate pea growth from wheat growth," Ecological Modelling, Elsevier, vol. 250(C), pages 258-268.
- Confalonieri, Roberto & Acutis, Marco & Bellocchi, Gianni & Donatelli, Marcello, 2009. "Multi-metric evaluation of the models WARM, CropSyst, and WOFOST for rice," Ecological Modelling, Elsevier, vol. 220(11), pages 1395-1410.
- Wang, Weishu & Rong, Yao & Zhang, Chenglong & Wang, Chaozi & Huo, Zailin, 2024. "Data assimilation of soil moisture and leaf area index effectively improves the simulation accuracy of water and carbon fluxes in coupled farmland hydrological model," Agricultural Water Management, Elsevier, vol. 291(C).
- Luo, Li & Sun, Shikun & Xue, Jing & Gao, Zihan & Zhao, Jinfeng & Yin, Yali & Gao, Fei & Luan, Xiaobo, 2023. "Crop yield estimation based on assimilation of crop models and remote sensing data: A systematic evaluation," Agricultural Systems, Elsevier, vol. 210(C).
- Raes, Dirk & Geerts, Sam & Kipkorir, Emmanuel & Wellens, Joost & Sahli, Ali, 2006. "Simulation of yield decline as a result of water stress with a robust soil water balance model," Agricultural Water Management, Elsevier, vol. 81(3), pages 335-357, March.
- Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
- Masseroni, Daniele & Gangi, Fabiola & Galli, Andrea & Ceriani, Rodolfo & De Gaetani, Carlo & Gandolfi, Claudio, 2022. "Behind the efficiency of border irrigation: Lesson learned in Northern Italy," Agricultural Water Management, Elsevier, vol. 269(C).
- Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
- Nyathi, M.K. & Van Halsema, G.E. & Beletse, Y.G. & Annandale, J.G. & Struik, P.C., 2018. "Nutritional water productivity of selected leafy vegetables," Agricultural Water Management, Elsevier, vol. 209(C), pages 111-122.
More about this item
Keywords
AquaCrop; Calibration; Data assimilation; Canopy cover; Soil moisture; Yield prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:252:y:2021:i:c:s0378377421001499. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.