IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v266y2022ics0378377422001238.html
   My bibliography  Save this article

Multi-variable assimilation into a modified AquaCrop model for improved maize simulation without management or crop phenology information

Author

Listed:
  • Lu, Yang
  • Wei, Chunzhu
  • McCabe, Matthew F.
  • Sheffield, Justin

Abstract

Accurate crop modeling at the field-level is important for yield prediction and agricultural risk mitigation, but is often hindered by the lack of information on field management as well as crop phenology of different cultivars. This study aims to develop a data assimilation framework for field-level crop modeling without management or crop phenology information for potential remote sensing applications. To do this, we first present a Monte Carlo simulation-based approach to estimating planting date and quasi-calibrated phenological parameters. Second, a simplified fertility stress scheme is developed for the AquaCrop model. The aim here is not necessarily to improve the AquaCrop model but to facilitate ensemble simulation when the field-level fertility stress condition is unknown. Finally, in situ soil moisture, canopy cover and biomass measurements are assimilated into the model to estimate crop yield, with the potential for yield prediction also explored. The experiments were performed for a rainfed maize field over 9 growing seasons, with each using a different maize cultivar. Results suggest that the planting dates can be accurately estimated (RMSE = 7.1 days, MAE = 5.4 days), and that the simplified fertility stress scheme adequately approximates the biomass and yield estimates from the original AquaCrop model under different fertility stress conditions. Data assimilation improves yield estimation, with an RMSE of 0.97 Mg/ha compared to 2.14 Mg/ha from the no-assimilation case. Yield prediction experiments reveal that the method is able to predict yield within 15% of the observed values up to 3 months before harvest. The proposed methodology does not rely on field-based information (e.g., planting date, plant density, crop phenology, fertility condition), and illustrates the potential for field-level crop modeling and yield forecasting using remote sensing data.

Suggested Citation

  • Lu, Yang & Wei, Chunzhu & McCabe, Matthew F. & Sheffield, Justin, 2022. "Multi-variable assimilation into a modified AquaCrop model for improved maize simulation without management or crop phenology information," Agricultural Water Management, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:agiwat:v:266:y:2022:i:c:s0378377422001238
    DOI: 10.1016/j.agwat.2022.107576
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422001238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Nana & Wu, Bingfang, 2014. "Integrated spatial–temporal analysis of crop water productivity of winter wheat in Hai Basin," Agricultural Water Management, Elsevier, vol. 133(C), pages 24-33.
    2. Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    3. Li, Yan & Zhou, Qingguo & Zhou, Jian & Zhang, Gaofeng & Chen, Chong & Wang, Jing, 2014. "Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions," Ecological Modelling, Elsevier, vol. 291(C), pages 15-27.
    4. Jin, Xiuliang & Li, Zhenhai & Feng, Haikuan & Ren, Zhibin & Li, Shaokun, 2020. "Estimation of maize yield by assimilating biomass and canopy cover derived from hyperspectral data into the AquaCrop model," Agricultural Water Management, Elsevier, vol. 227(C).
    5. Lu, Yang & Chibarabada, Tendai P. & Ziliani, Matteo G. & Onema, Jean-Marie Kileshye & McCabe, Matthew F. & Sheffield, Justin, 2021. "Assimilation of soil moisture and canopy cover data improves maize simulation using an under-calibrated crop model," Agricultural Water Management, Elsevier, vol. 252(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmanuel Lekakis & Athanasios Zaikos & Alexios Polychronidis & Christos Efthimiou & Ioannis Pourikas & Theano Mamouka, 2022. "Evaluation of Different Modelling Techniques with Fusion of Satellite, Soil and Agro-Meteorological Data for the Assessment of Durum Wheat Yield under a Large Scale Application," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
    2. Wang, Weishu & Rong, Yao & Zhang, Chenglong & Wang, Chaozi & Huo, Zailin, 2024. "Data assimilation of soil moisture and leaf area index effectively improves the simulation accuracy of water and carbon fluxes in coupled farmland hydrological model," Agricultural Water Management, Elsevier, vol. 291(C).
    3. Luo, Li & Sun, Shikun & Xue, Jing & Gao, Zihan & Zhao, Jinfeng & Yin, Yali & Gao, Fei & Luan, Xiaobo, 2023. "Crop yield estimation based on assimilation of crop models and remote sensing data: A systematic evaluation," Agricultural Systems, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Yang & Chibarabada, Tendai P. & Ziliani, Matteo G. & Onema, Jean-Marie Kileshye & McCabe, Matthew F. & Sheffield, Justin, 2021. "Assimilation of soil moisture and canopy cover data improves maize simulation using an under-calibrated crop model," Agricultural Water Management, Elsevier, vol. 252(C).
    2. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    3. Wang, Weishu & Rong, Yao & Zhang, Chenglong & Wang, Chaozi & Huo, Zailin, 2024. "Data assimilation of soil moisture and leaf area index effectively improves the simulation accuracy of water and carbon fluxes in coupled farmland hydrological model," Agricultural Water Management, Elsevier, vol. 291(C).
    4. Luo, Li & Sun, Shikun & Xue, Jing & Gao, Zihan & Zhao, Jinfeng & Yin, Yali & Gao, Fei & Luan, Xiaobo, 2023. "Crop yield estimation based on assimilation of crop models and remote sensing data: A systematic evaluation," Agricultural Systems, Elsevier, vol. 210(C).
    5. Corbari, C. & Ben Charfi, I. & Al Bitar, A. & Skokovic, D. & Sobrino, J.A. & Perelli, C. & Branca, G. & Mancini, M., 2022. "A fully coupled crop-water-energy balance model based on satellite data for maize and tomato crops yield estimates: The FEST-EWB-SAFY model," Agricultural Water Management, Elsevier, vol. 272(C).
    6. Linker, Raphael & Kisekka, Isaya, 2022. "Concurrent data assimilation and model-based optimization of irrigation scheduling," Agricultural Water Management, Elsevier, vol. 274(C).
    7. Kelly, T.D. & Foster, T. & Schultz, David M., 2023. "Assessing the value of adapting irrigation strategies within the season," Agricultural Water Management, Elsevier, vol. 275(C).
    8. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    9. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    10. Tsakmakis, I.D. & Gikas, G.D. & Sylaios, G.K., 2021. "Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize," Agricultural Water Management, Elsevier, vol. 255(C).
    11. Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
    12. Lee, Sangchul & Qi, Junyu & McCarty, Gregory W. & Anderson, Martha & Yang, Yun & Zhang, Xuesong & Moglen, Glenn E. & Kwak, Dooahn & Kim, Hyunglok & Lakshmi, Venkataraman & Kim, Seongyun, 2022. "Combined use of crop yield statistics and remotely sensed products for enhanced simulations of evapotranspiration within an agricultural watershed," Agricultural Water Management, Elsevier, vol. 264(C).
    13. Avargani, Habib Karimi & Hashemy Shahdany, S. Mehdy & Kamrani, Kazem & Maestre, Jose, M. & Hashemi Garmdareh, S. Ebrahim & Liaghat, Abdolmajid, 2022. "Prioritization of surface water distribution in irrigation districts to mitigate crop yield reduction during water scarcity," Agricultural Water Management, Elsevier, vol. 269(C).
    14. Shi, Yinfang & Wang, Zhaoyang & Hou, Cheng & Zhang, Puhan, 2022. "Yield estimation of Lycium barbarum L. based on the WOFOST model," Ecological Modelling, Elsevier, vol. 473(C).
    15. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & He, Hai & He, Jian & Yin, Hao & Zhang, Yaxin, 2021. "Coupled hydrology-crop growth model incorporating an improved evapotranspiration module," Agricultural Water Management, Elsevier, vol. 246(C).
    16. Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
    17. He, Liuyue & Xue, Jingyuan & Wang, Sufen, 2023. "WHCrop: A novel water-heat driven crop model for estimating the spatiotemporal dynamics of crop growth for arid region," Agricultural Water Management, Elsevier, vol. 287(C).
    18. Usha Poudel & Haroon Stephen & Sajjad Ahmad, 2021. "Evaluating Irrigation Performance and Water Productivity Using EEFlux ET and NDVI," Sustainability, MDPI, vol. 13(14), pages 1-26, July.
    19. Haoteng Zhao & Liping Di & Liying Guo & Chen Zhang & Li Lin, 2023. "An Automated Data-Driven Irrigation Scheduling Approach Using Model Simulated Soil Moisture and Evapotranspiration," Sustainability, MDPI, vol. 15(17), pages 1-17, August.
    20. Sandhu, Rupinder & Irmak, Suat, 2020. "Performance assessment of Hybrid-Maize model for rainfed, limited and full irrigation conditions," Agricultural Water Management, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:266:y:2022:i:c:s0378377422001238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.