IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4045-d1077609.html
   My bibliography  Save this article

Best Management Practices Affect Water Quality in Coastal Watersheds

Author

Listed:
  • Shreeya Bhattarai

    (Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, USA)

  • Prem B. Parajuli

    (Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, USA)

Abstract

Coastal ecosystems are vulnerable due to watershed sediment and nutrient loads. In this study, the hydrology and water quality of two coastal watersheds, Wolf River watershed (WRW) and Jourdan River watershed (JRW), were assessed using the Soil and Water Assessment Tool (SWAT). Model performance evaluation was performed using the coefficient of determination (R 2 ) and the Nash–Sutcliffe Efficiency (NSE). After model calibration and validation, the effectiveness of ponds, wetlands, riparian buffers, and their combination as best management practices (BMPs) were analyzed. Total suspended solids (TSS) was reduced by 31.15% in the pond scenario and 30.37% in the wetland in WRW. In addition, mineral phosphorous (MinP) was reduced by 11.84% and 9.63% in ponds and wetlands, respectively. Similarly, in JRW, TSS was reduced by 74.89% in ponds and 74.90% in wetlands. Likewise, ponds and wetlands reduced MinP by 8.05% and 13.40%, respectively. Among four riparian buffer scenarios, the 30 m buffer prompted the estimation of higher reductions such as TSS by 28.36% and MinP by 29.77% in WRW, whereas a 13.14% TSS and 22.89% MinP reduction in JRW. In addition, combined BMP, TSS was reduced by 30.37% and MinP by 52.09% in WRW, followed by a 74.92% reduction in TSS and 27.37% in MinP in JRW. All BMP implementations were effective in reducing TSS and MinP. This study suggests that ponds and wetlands were effective in reducing TSS and riparian buffers were effective in reducing MinP. These findings could be insightful in coastal watershed management.

Suggested Citation

  • Shreeya Bhattarai & Prem B. Parajuli, 2023. "Best Management Practices Affect Water Quality in Coastal Watersheds," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4045-:d:1077609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4045/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4045/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Avay Risal & Prem B. Parajuli, 2022. "Evaluation of the Impact of Best Management Practices on Streamflow, Sediment and Nutrient Yield at Field and Watershed Scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1093-1105, February.
    2. Sith, Ratino & Watanabe, Atsushi & Nakamura, Takashi & Yamamoto, Takahiro & Nadaoka, Kazuo, 2019. "Assessment of water quality and evaluation of best management practices in a small agricultural watershed adjacent to Coral Reef area in Japan," Agricultural Water Management, Elsevier, vol. 213(C), pages 659-673.
    3. Leh, Mansoor D.K. & Sharpley, Andrew N. & Singh, Gurdeep & Matlock, Marty D., 2018. "Assessing the impact of the MRBI program in a data limited Arkansas watershed using the SWAT model," Agricultural Water Management, Elsevier, vol. 202(C), pages 202-219.
    4. Vivek Venishetty & Prem B. Parajuli, 2022. "Assessment of BMPs by Estimating Hydrologic and Water Quality Outputs Using SWAT in Yazoo River Watershed," Agriculture, MDPI, vol. 12(4), pages 1-14, March.
    5. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renfang Chang & Yunqi Wang & Huifang Liu & Zhen Wang & Lei Ma & Jiancong Zhang & Junjie Li & Zhiyi Yan & Yihui Zhang & Danqing Li, 2024. "Optimizing Non-Point Source Pollution Management: Evaluating Cost-Effective Strategies in a Small Watershed within the Three Gorges Reservoir Area, China," Land, MDPI, vol. 13(6), pages 1-21, May.
    2. Dipesh Nepal & Prem B. Parajuli, 2022. "Assessment of Best Management Practices on Hydrology and Sediment Yield at Watershed Scale in Mississippi Using SWAT," Agriculture, MDPI, vol. 12(4), pages 1-19, April.
    3. Momm, Henrique G. & Bingner, Ronald L. & Moore, Katy & Herring, Glenn, 2022. "Integrated surface and groundwater modeling to enhance water resource sustainability in agricultural watersheds," Agricultural Water Management, Elsevier, vol. 269(C).
    4. Shailendra Singh & Soonho Hwang & Jeffrey G. Arnold & Rabin Bhattarai, 2023. "Evaluation of Agricultural BMPs’ Impact on Water Quality and Crop Production Using SWAT+ Model," Agriculture, MDPI, vol. 13(8), pages 1-16, July.
    5. Rossetto, Rudy & De Filippis, Giovanna & Triana, Federico & Ghetta, Matteo & Borsi, Iacopo & Schmid, Wolfgang, 2019. "Software tools for management of conjunctive use of surface- and ground-water in the rural environment: integration of the Farm Process and the Crop Growth Module in the FREEWAT platform," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    6. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    7. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    8. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    9. Medwid, Laura J. & Lambert, Dayton M. & Clark, Christopher D. & Hawkins, Shawn A. & McClellan, Hannah A., 2016. "Estimating Soil Loss Abatement Curves with Primary Survey Data and Hydrologic Models: An Empirical Example for Livestock Production in an East Tennessee Watershed," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230052, Southern Agricultural Economics Association.
    10. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    11. Alan F. Hamlet & Nima Ehsani & Jennifer L. Tank & Zachariah Silver & Kyuhyun Byun & Ursula H. Mahl & Shannon L. Speir & Matt T. Trentman & Todd V. Royer, 2024. "Effects of climate and winter cover crops on nutrient loss in agricultural watersheds in the midwestern U.S," Climatic Change, Springer, vol. 177(1), pages 1-21, January.
    12. Negar Tayebzadeh Moghadam & Karim C. Abbaspour & Bahram Malekmohammadi & Mario Schirmer & Ahmad Reza Yavari, 2021. "Spatiotemporal Modelling of Water Balance Components in Response to Climate and Landuse Changes in a Heterogeneous Mountainous Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 793-810, February.
    13. Yates, Andrew J. & Doyle, Martin W. & Rigby, J.R. & Schnier, Kurt E., 2013. "Market power, private information, and the optimal scale of pollution permit markets with application to North Carolina's Neuse River," Resource and Energy Economics, Elsevier, vol. 35(3), pages 256-276.
    14. Eini, Mohammad Reza & Salmani, Haniyeh & Piniewski, Mikołaj, 2023. "Comparison of process-based and statistical approaches for simulation and projections of rainfed crop yields," Agricultural Water Management, Elsevier, vol. 277(C).
    15. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    16. S. K. Aryal & S. Ashbolt & B. S. McIntosh & K. P. Petrone & S. Maheepala & R. K. Chowdhury & T. Gardener & R. Gardiner, 2016. "Assessing and Mitigating the Hydrological Impacts of Urbanisation in Semi-Urban Catchments Using the Storm Water Management Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5437-5454, November.
    17. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    18. Kotchakarn Nantasaksiri & Patcharawat Charoen-Amornkitt & Takashi Machimura, 2021. "Land Potential Assessment of Napier Grass Plantation for Power Generation in Thailand Using SWAT Model. Model Validation and Parameter Calibration," Energies, MDPI, vol. 14(5), pages 1-15, March.
    19. Howard, Gregory E. & Zhang, Wendong & Valcu-Lisman, Adriana M., 2021. "Evaluating the Efficiency-Participation Tradeoff in Agricultural Conservation Programs: The Effect of Reverse Auctions, Spatial Targeting, and Higher Offered Payments," 2021 Annual Meeting, August 1-3, Austin, Texas 313926, Agricultural and Applied Economics Association.
    20. Sanjeet Kumar & Ashok Mishra, 2015. "Critical Erosion Area Identification Based on Hydrological Response Unit Level for Effective Sedimentation Control in a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1749-1765, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4045-:d:1077609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.