IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v183y2017icp49-59.html
   My bibliography  Save this article

High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard

Author

Listed:
  • Santesteban, L.G.
  • Di Gennaro, S.F.
  • Herrero-Langreo, A.
  • Miranda, C.
  • Royo, J.B.
  • Matese, A.

Abstract

Thermal imaging can become a readily usable tool for crop agricultural water management, since it allows a quick determination of canopy surface temperature that, as linked to transpiration, can give an idea of crop water status. In the last years, the resolution of thermal imaging systems has increased and its weight decreased, fostering their implementation on Unmanned Aerial Vehicles (UAV) for civil and agricultural engineering purposes. This approach would overcome most of the limitations of on site thermal imaging, allowing mapping plant water status at either field or farm scale, taking thus into account the naturally existing or artificially induced variability at those scales. The aim of this work was to evaluate to which extent high-resolution thermal imaging allows evaluating the instantaneous and seasonal variability of water status within a vineyard. The novelty and significance of our approach is that the specifically designed and build unmanned aerial vehicle (UAV) provided very high-resolution imaging (pixel <9cm), and that it was used at a commercially relevant acreage (7.5ha). This set-up was used to obtain Crop Water Stress Index (CWSI) from thermal images in a clear-sky day. CWSI values were and compared to stem water potential (Ψs) and stomatal conductance (gs) measured at 14 sampling sites across the vineyard at the moment when images where acquired. In order to evaluate the potential of CWSI acquired in a single day to estimate within-vineyard patterns of variation in water status, a spatial modeling approach was used. CWSI correlated well with Ψs and gs at the moment of image acquisition, showing to have a great potential to monitor instantaneous variations in water status within a vineyard. The information provided by thermal images proved to be relevant at a seasonal scale as well, although it did not match seasonal trends in water status but mimicked other physiological processes occurring during ripening. Therefore, if a picture of variations in water status is required, it would be necessary to acquire thermal images at several dates along the summer.

Suggested Citation

  • Santesteban, L.G. & Di Gennaro, S.F. & Herrero-Langreo, A. & Miranda, C. & Royo, J.B. & Matese, A., 2017. "High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard," Agricultural Water Management, Elsevier, vol. 183(C), pages 49-59.
  • Handle: RePEc:eee:agiwat:v:183:y:2017:i:c:p:49-59
    DOI: 10.1016/j.agwat.2016.08.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416303201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.08.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Orley Ashenfelter & Karl Storchmann, 2016. "Editor's Choice The Economics of Wine, Weather, and Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 25-46.
    2. Vincent Viguie & Franck Lecocq & Jean-Marc Touzard, 2014. "Viticulture and Adaptation to Climate Change," Post-Print hal-00982086, HAL.
    3. Pou, Alícia & Diago, Maria P. & Medrano, Hipólito & Baluja, Javier & Tardaguila, Javier, 2014. "Validation of thermal indices for water status identification in grapevine," Agricultural Water Management, Elsevier, vol. 134(C), pages 60-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramírez-Cuesta, J.M. & Intrigliolo, D.S. & Lorite, I.J. & Moreno, M.A. & Vanella, D. & Ballesteros, R. & Hernández-López, D. & Buesa, I., 2023. "Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model," Agricultural Water Management, Elsevier, vol. 281(C).
    2. Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
    3. Apolo-Apolo, O.E. & Martínez-Guanter, J. & Pérez-Ruiz, M. & Egea, G., 2020. "Design and assessment of new artificial reference surfaces for real time monitoring of crop water stress index in maize," Agricultural Water Management, Elsevier, vol. 240(C).
    4. de Almeida, Ailson Maciel & Coelho, Rubens Duarte & da Silva Barros, Timóteo Herculino & de Oliveira Costa, Jéfferson & Quiloango-Chimarro, Carlos Alberto & Moreno-Pizani, Maria Alejandra & Farias-Ram, 2022. "Water productivity and canopy thermal response of pearl millet subjected to different irrigation levels," Agricultural Water Management, Elsevier, vol. 272(C).
    5. Ramírez-Cuesta, J.M. & Ortuño, M.F. & Gonzalez-Dugo, V. & Zarco-Tejada, P.J. & Parra, M. & Rubio-Asensio, J.S. & Intrigliolo, D.S., 2022. "Assessment of peach trees water status and leaf gas exchange using on-the-ground versus airborne-based thermal imagery," Agricultural Water Management, Elsevier, vol. 267(C).
    6. Puppala, Harish & Peddinti, Pranav R.T. & Tamvada, Jagannadha Pawan & Ahuja, Jaya & Kim, Byungmin, 2023. "Barriers to the adoption of new technologies in rural areas: The case of unmanned aerial vehicles for precision agriculture in India," Technology in Society, Elsevier, vol. 74(C).
    7. Alessandro Matese & Salvatore Filippo Di Gennaro, 2018. "Practical Applications of a Multisensor UAV Platform Based on Multispectral, Thermal and RGB High Resolution Images in Precision Viticulture," Agriculture, MDPI, vol. 8(7), pages 1-13, July.
    8. Benjamin T. Fraser & Christine L. Bunyon & Sarah Reny & Isabelle Sophia Lopez & Russell G. Congalton, 2022. "Analysis of Unmanned Aerial System (UAS) Sensor Data for Natural Resource Applications: A Review," Geographies, MDPI, vol. 2(2), pages 1-38, June.
    9. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Graveline, Nina & Grémont, Marine, 2021. "The role of perceptions, goals and characteristics of wine growers on irrigation adoption in the context of climate change," Agricultural Water Management, Elsevier, vol. 250(C).
    2. Vega-Bayo, Ainhoa & Mariel, Petr & Meyerhoff, Jürgen & Corsi, Armando Maria & Chovan, Milan, 2023. "Climate change adaptation preferences of winemakers from the Rioja wine appellation," Journal of choice modelling, Elsevier, vol. 48(C).
    3. Romero, Pascual & Botía, Pablo & del Amor, Francisco M. & Gil-Muñoz, Rocío & Flores, Pilar & Navarro, Josefa María, 2019. "Interactive effects of the rootstock and the deficit irrigation technique on wine composition, nutraceutical potential, aromatic profile, and sensory attributes under semiarid and water limiting condi," Agricultural Water Management, Elsevier, vol. 225(C).
    4. Levin, Alexander D., 2019. "Re-evaluating pressure chamber methods of water status determination in field-grown grapevine (Vitis spp.)," Agricultural Water Management, Elsevier, vol. 221(C), pages 422-429.
    5. Kumar, Navsal & Adeloye, Adebayo J. & Shankar, Vijay & Rustum, Rabee, 2020. "Neural computing modelling of the crop water stress index," Agricultural Water Management, Elsevier, vol. 239(C).
    6. Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
    7. Daniel Kaimann & Clarissa Laura Maria Spiess Bru, 2023. "Sounds too Feminine? Brand Gender and The Impact on Professional Critics," Working Papers Dissertations 107, Paderborn University, Faculty of Business Administration and Economics.
    8. Krista C. Shellie & Bradley A. King, 2020. "Application of a Daily Crop Water Stress Index to Deficit Irrigate Malbec Grapevine under Semi-Arid Conditions," Agriculture, MDPI, vol. 10(11), pages 1-17, October.
    9. Pappalardo, S. & Consoli, S. & Longo-Minnolo, G. & Vanella, D. & Longo, D. & Guarrera, S. & D’Emilio, A. & Ramírez-Cuesta, J.M., 2023. "Performance evaluation of a low-cost thermal camera for citrus water status estimation," Agricultural Water Management, Elsevier, vol. 288(C).
    10. Daniele Masseroni & Bianca Ortuani & Martina Corti & Pietro Marino Gallina & Giacomo Cocetta & Antonio Ferrante & Arianna Facchi, 2017. "Assessing the Reliability of Thermal and Optical Imaging Techniques for Detecting Crop Water Status under Different Nitrogen Levels," Sustainability, MDPI, vol. 9(9), pages 1-20, August.
    11. Giulia Meloni & Kym Anderson & Koen Deconinck & Johan Swinnen, 2019. "Wine Regulations," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 620-649, December.
    12. Marcella Michela Giuliani & Eugenio Nardella & Anna Gagliardi & Giuseppe Gatta, 2017. "Deficit Irrigation and Partial Root-Zone Drying Techniques in Processing Tomato Cultivated under Mediterranean Climate Conditions," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
    13. King, B.A. & Shellie, K.C., 2016. "Evaluation of neural network modeling to predict non-water-stressed leaf temperature in wine grape for calculation of crop water stress index," Agricultural Water Management, Elsevier, vol. 167(C), pages 38-52.
    14. Ramírez-Cuesta, J.M. & Ortuño, M.F. & Gonzalez-Dugo, V. & Zarco-Tejada, P.J. & Parra, M. & Rubio-Asensio, J.S. & Intrigliolo, D.S., 2022. "Assessment of peach trees water status and leaf gas exchange using on-the-ground versus airborne-based thermal imagery," Agricultural Water Management, Elsevier, vol. 267(C).
    15. García-Tejero, I.F. & Rubio, A.E. & Viñuela, I. & Hernández, A & Gutiérrez-Gordillo, S & Rodríguez-Pleguezuelo, C.R. & Durán-Zuazo, V.H., 2018. "Thermal imaging at plant level to assess the crop-water status in almond trees (cv. Guara) under deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 208(C), pages 176-186.
    16. García-Tejero, I.F. & Costa, J.M. & Egipto, R. & Durán-Zuazo, V.H. & Lima, R.S.N. & Lopes, C.M. & Chaves, M.M., 2016. "Thermal data to monitor crop-water status in irrigated Mediterranean viticulture," Agricultural Water Management, Elsevier, vol. 176(C), pages 80-90.
    17. Atiqotun Fitriyah & Alvin Fatikhunnada & Fumi Okura & Bayu Dwi Apri Nugroho & Tasuku Kato, 2019. "Analysis of the Drought Mitigated Mechanism in Terraced Paddy Fields Using CWSI and TVDI Indices and Hydrological Monitoring," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    18. King, B.A. & Tarkalson, D.D. & Sharma, V. & Bjorneberg, D.L., 2021. "Thermal Crop Water Stress Index Base Line Temperatures for Sugarbeet in Arid Western U.S," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Costa, J.M. & Egipto, R. & Sánchez-Virosta, A. & Lopes, C.M. & Chaves, M.M., 2019. "Canopy and soil thermal patterns to support water and heat stress management in vineyards," Agricultural Water Management, Elsevier, vol. 216(C), pages 484-496.
    20. Lima, R.S.N & García-Tejero, I. & Lopes, T.S. & Costa, J.M. & Vaz, M. & Durán-Zuazo, V.H. & Chaves, M. & Glenn, D.M. & Campostrini, E., 2016. "Linking thermal imaging to physiological indicators in Carica papaya L. under different watering regimes," Agricultural Water Management, Elsevier, vol. 164(P1), pages 148-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:183:y:2017:i:c:p:49-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.