IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i11p492-d433170.html
   My bibliography  Save this article

Application of a Daily Crop Water Stress Index to Deficit Irrigate Malbec Grapevine under Semi-Arid Conditions

Author

Listed:
  • Krista C. Shellie

    (USDA-ARS Horticultural Crops Research Unit (retired), Corvallis, OR 97330, USA)

  • Bradley A. King

    (USDA-ARS Northwest Irrigation and Soils Research Laboratory, Kimberly, ID 83341, USA)

Abstract

Precision irrigation of wine grape is hindered by the lack of an automated method for monitoring vine water status. The objectives of this study were to: Validate an automated model for remote calculation of a daily crop water stress index ( CWSI ) for the wine grape ( Vitis vinifera L.) cultivar Malbec and evaluate its suitability for use in irrigation scheduling. Vines were supplied weekly with different percentages of evapotranspiration-based estimated water demand (ET c ) over four growing seasons. In the fifth growing season, different daily CWSI threshold values were used to trigger an irrigation event that supplied 28 mm of water. All three indicators of vine water status ( CWSI , midday leaf water potential (Ψ lmd ), and juice carbon isotope ratio (δ 13 C)) detected an increase in stress severity as the irrigation amount decreased. When the irrigation amount decreased from 100% to 50% ET c , 70% to 35% ET c , or the daily CWSI threshold value increased from 0.4 to 0.6, berry fresh weight and juice titratable acidity decreased, juice δ 13 C increased, the weekly CWSI increased, and Ψ lmd decreased. Under the semi-arid conditions of this study, utilizing a daily CWSI threshold for irrigation scheduling reduced the irrigation amount without compromising the yield or changes in berry composition and remotely provided automated decision support for managing water stress severity in grapevine.

Suggested Citation

  • Krista C. Shellie & Bradley A. King, 2020. "Application of a Daily Crop Water Stress Index to Deficit Irrigate Malbec Grapevine under Semi-Arid Conditions," Agriculture, MDPI, vol. 10(11), pages 1-17, October.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:11:p:492-:d:433170
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/11/492/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/11/492/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pou, Alícia & Diago, Maria P. & Medrano, Hipólito & Baluja, Javier & Tardaguila, Javier, 2014. "Validation of thermal indices for water status identification in grapevine," Agricultural Water Management, Elsevier, vol. 134(C), pages 60-72.
    2. Levin, Alexander D., 2019. "Re-evaluating pressure chamber methods of water status determination in field-grown grapevine (Vitis spp.)," Agricultural Water Management, Elsevier, vol. 221(C), pages 422-429.
    3. O'Shaughnessy, S.A. & Evett, S.R. & Colaizzi, P.D. & Howell, T.A., 2011. "Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton," Agricultural Water Management, Elsevier, vol. 98(10), pages 1523-1535, August.
    4. King, B.A. & Shellie, K.C., 2016. "Evaluation of neural network modeling to predict non-water-stressed leaf temperature in wine grape for calculation of crop water stress index," Agricultural Water Management, Elsevier, vol. 167(C), pages 38-52.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    2. Anzhen Qin & Dongfeng Ning & Zhandong Liu & Sen Li & Ben Zhao & Aiwang Duan, 2021. "Determining Threshold Values for a Crop Water Stress Index-Based Center Pivot Irrigation with Optimum Grain Yield," Agriculture, MDPI, vol. 11(10), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramírez-Cuesta, J.M. & Ortuño, M.F. & Gonzalez-Dugo, V. & Zarco-Tejada, P.J. & Parra, M. & Rubio-Asensio, J.S. & Intrigliolo, D.S., 2022. "Assessment of peach trees water status and leaf gas exchange using on-the-ground versus airborne-based thermal imagery," Agricultural Water Management, Elsevier, vol. 267(C).
    2. King, B.A. & Tarkalson, D.D. & Sharma, V. & Bjorneberg, D.L., 2021. "Thermal Crop Water Stress Index Base Line Temperatures for Sugarbeet in Arid Western U.S," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Levin, Alexander D., 2019. "Re-evaluating pressure chamber methods of water status determination in field-grown grapevine (Vitis spp.)," Agricultural Water Management, Elsevier, vol. 221(C), pages 422-429.
    4. Kumar, Navsal & Adeloye, Adebayo J. & Shankar, Vijay & Rustum, Rabee, 2020. "Neural computing modelling of the crop water stress index," Agricultural Water Management, Elsevier, vol. 239(C).
    5. King, B.A. & Shellie, K.C., 2016. "Evaluation of neural network modeling to predict non-water-stressed leaf temperature in wine grape for calculation of crop water stress index," Agricultural Water Management, Elsevier, vol. 167(C), pages 38-52.
    6. Eleonora Cataldo & Maddalena Fucile & Giovan Battista Mattii, 2022. "Effects of Kaolin and Shading Net on the Ecophysiology and Berry Composition of Sauvignon Blanc Grapevines," Agriculture, MDPI, vol. 12(4), pages 1-21, March.
    7. Roei Grimberg & Meir Teitel & Shay Ozer & Asher Levi & Avi Levy, 2022. "Estimation of Greenhouse Tomato Foliage Temperature Using DNN and ML Models," Agriculture, MDPI, vol. 12(7), pages 1-12, July.
    8. Veysi, Shadman & Naseri, Abd Ali & Hamzeh, Saeid & Bartholomeus, Harm, 2017. "A satellite based crop water stress index for irrigation scheduling in sugarcane fields," Agricultural Water Management, Elsevier, vol. 189(C), pages 70-86.
    9. Petruzzellis, Francesco & Natale, Sara & Bariviera, Luca & Calderan, Alberto & Mihelčič, Alenka & Reščič, Jan & Sivilotti, Paolo & Šuklje, Katja & Lisjak, Klemen & Vanzo, Andreja & Nardini, Andrea, 2022. "High spatial heterogeneity of water stress levels in Refošk grapevines cultivated in Classical Karst," Agricultural Water Management, Elsevier, vol. 260(C).
    10. Katimbo, Abia & Rudnick, Daran R. & DeJonge, Kendall C. & Lo, Tsz Him & Qiao, Xin & Franz, Trenton E. & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Crop water stress index computation approaches and their sensitivity to soil water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
    11. Garibay, Victoria M. & Kothari, Kritika & Ale, Srinivasulu & Gitz, Dennis C. & Morgan, Gaylon D. & Munster, Clyde L., 2019. "Determining water-use-efficient irrigation strategies for cotton using the DSSAT CSM CROPGRO-cotton model evaluated with in-season data," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    12. Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
    13. Pappalardo, S. & Consoli, S. & Longo-Minnolo, G. & Vanella, D. & Longo, D. & Guarrera, S. & D’Emilio, A. & Ramírez-Cuesta, J.M., 2023. "Performance evaluation of a low-cost thermal camera for citrus water status estimation," Agricultural Water Management, Elsevier, vol. 288(C).
    14. Daniele Masseroni & Bianca Ortuani & Martina Corti & Pietro Marino Gallina & Giacomo Cocetta & Antonio Ferrante & Arianna Facchi, 2017. "Assessing the Reliability of Thermal and Optical Imaging Techniques for Detecting Crop Water Status under Different Nitrogen Levels," Sustainability, MDPI, vol. 9(9), pages 1-20, August.
    15. Candogan, Burak Nazmi & Sincik, Mehmet & Buyukcangaz, Hakan & Demirtas, Cigdem & Goksoy, Abdurrahim Tanju & Yazgan, Senih, 2013. "Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 113-121.
    16. Fan, Yubing & Himanshu, Sushil K. & Ale, Srinivasulu & DeLaune, Paul B. & Zhang, Tian & Park, Seong C. & Colaizzi, Paul D. & Evett, Steven R. & Baumhardt, R. Louis, 2022. "The synergy between water conservation and economic profitability of adopting alternative irrigation systems for cotton production in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 262(C).
    17. Santesteban, L.G. & Di Gennaro, S.F. & Herrero-Langreo, A. & Miranda, C. & Royo, J.B. & Matese, A., 2017. "High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard," Agricultural Water Management, Elsevier, vol. 183(C), pages 49-59.
    18. Colaizzi, Paul D. & O’Shaughnessy, Susan A. & Evett, Steve R. & Mounce, Ryan B., 2017. "Crop evapotranspiration calculation using infrared thermometers aboard center pivots," Agricultural Water Management, Elsevier, vol. 187(C), pages 173-189.
    19. O’Shaughnessy, Susan A. & Evett, Steven R. & Colaizzi, Paul D., 2015. "Dynamic prescription maps for site-specific variable rate irrigation of cotton," Agricultural Water Management, Elsevier, vol. 159(C), pages 123-138.
    20. Marcella Michela Giuliani & Eugenio Nardella & Anna Gagliardi & Giuseppe Gatta, 2017. "Deficit Irrigation and Partial Root-Zone Drying Techniques in Processing Tomato Cultivated under Mediterranean Climate Conditions," Sustainability, MDPI, vol. 9(12), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:11:p:492-:d:433170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.