IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v176y2016icp80-90.html
   My bibliography  Save this article

Thermal data to monitor crop-water status in irrigated Mediterranean viticulture

Author

Listed:
  • García-Tejero, I.F.
  • Costa, J.M.
  • Egipto, R.
  • Durán-Zuazo, V.H.
  • Lima, R.S.N.
  • Lopes, C.M.
  • Chaves, M.M.

Abstract

Canopy temperature (TC) can be a robust indicator of grapevine water status. However, the assessment of TC by thermography in field conditions requires optimization, especially under variable environmental conditions (daily and seasonal) just like it occurs in Mediterranean areas. Besides, simplicity and robustness should be the basis of a wider use of thermography in field conditions. Therefore the comparison of simpler and more complex approaches in terms of thermal indicators is wise to test. Our major aims were: i) to assess the performance of four common thermal indicators (canopy temperature − TC, Crop Water Stress Index − CWSI, index of relative stomatal conductance − IG, and the difference between TC and the surrounding air − ΔTcanopy-air) to support irrigation decisions ii) to optimize the timing of thermal measurements for different genotypes and iii) to obtain mathematical functions to estimate leaf gas exchange parameters on the basis of thermal data. The trial was conducted in the summer of 2013, in south Portugal. Two V. vinifera red varieties, Touriga Nacional and Aragonez (syn. Tempranillo) were tested. Vines were subjected to two irrigation regimes: i) sustained-deficit irrigation (based on the farm’s schedule − control) and ii) regulated-deficit irrigation (∼50% of the control). We found that measurements done between 11:00 and 17:00h provide the most significant correlations between TC, CWSI and IG and leaf stomatal conductance and net photosynthesis for both genotypes. Different linear mathematical functions were obtained to estimate leaf gas exchange based on the best performing thermal indicators under field conditions. Our results emphasize the value of TC as a relevant explanatory variable of vine’s physiological status, in spite of being a simpler and non-normalized thermal indicator. The potential relevance of TC for grapevine modelling and phenotyping is also discussed.

Suggested Citation

  • García-Tejero, I.F. & Costa, J.M. & Egipto, R. & Durán-Zuazo, V.H. & Lima, R.S.N. & Lopes, C.M. & Chaves, M.M., 2016. "Thermal data to monitor crop-water status in irrigated Mediterranean viticulture," Agricultural Water Management, Elsevier, vol. 176(C), pages 80-90.
  • Handle: RePEc:eee:agiwat:v:176:y:2016:i:c:p:80-90
    DOI: 10.1016/j.agwat.2016.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416301706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Costa, J.M. & Vaz, M. & Escalona, J. & Egipto, R. & Lopes, C. & Medrano, H. & Chaves, M.M., 2016. "Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity," Agricultural Water Management, Elsevier, vol. 164(P1), pages 5-18.
    2. Bota, J. & Tomás, M. & Flexas, J. & Medrano, H. & Escalona, J.M., 2016. "Differences among grapevine cultivars in their stomatal behavior and water use efficiency under progressive water stress," Agricultural Water Management, Elsevier, vol. 164(P1), pages 91-99.
    3. Pou, Alícia & Diago, Maria P. & Medrano, Hipólito & Baluja, Javier & Tardaguila, Javier, 2014. "Validation of thermal indices for water status identification in grapevine," Agricultural Water Management, Elsevier, vol. 134(C), pages 60-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Costa, J.M. & Egipto, R. & Sánchez-Virosta, A. & Lopes, C.M. & Chaves, M.M., 2019. "Canopy and soil thermal patterns to support water and heat stress management in vineyards," Agricultural Water Management, Elsevier, vol. 216(C), pages 484-496.
    2. Pappalardo, S. & Consoli, S. & Longo-Minnolo, G. & Vanella, D. & Longo, D. & Guarrera, S. & D’Emilio, A. & Ramírez-Cuesta, J.M., 2023. "Performance evaluation of a low-cost thermal camera for citrus water status estimation," Agricultural Water Management, Elsevier, vol. 288(C).
    3. Apolo-Apolo, O.E. & Martínez-Guanter, J. & Pérez-Ruiz, M. & Egea, G., 2020. "Design and assessment of new artificial reference surfaces for real time monitoring of crop water stress index in maize," Agricultural Water Management, Elsevier, vol. 240(C).
    4. García-Tejero, I.F. & Hernández, A. & Padilla-Díaz, C.M. & Diaz-Espejo, A. & Fernández, J.E, 2017. "Assessing plant water status in a hedgerow olive orchard from thermography at plant level," Agricultural Water Management, Elsevier, vol. 188(C), pages 50-60.
    5. García-Tejero, I.F. & Rubio, A.E. & Viñuela, I. & Hernández, A & Gutiérrez-Gordillo, S & Rodríguez-Pleguezuelo, C.R. & Durán-Zuazo, V.H., 2018. "Thermal imaging at plant level to assess the crop-water status in almond trees (cv. Guara) under deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 208(C), pages 176-186.
    6. Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
    7. Poirier-Pocovi, Magalie & Volder, Astrid & Bailey, Brian N., 2020. "Modeling of reference temperatures for calculating crop water stress indices from infrared thermography," Agricultural Water Management, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petruzzellis, Francesco & Natale, Sara & Bariviera, Luca & Calderan, Alberto & Mihelčič, Alenka & Reščič, Jan & Sivilotti, Paolo & Šuklje, Katja & Lisjak, Klemen & Vanzo, Andreja & Nardini, Andrea, 2022. "High spatial heterogeneity of water stress levels in Refošk grapevines cultivated in Classical Karst," Agricultural Water Management, Elsevier, vol. 260(C).
    2. Fraga, H. & García de Cortázar Atauri, I. & Santos, J.A, 2018. "Viticultural irrigation demands under climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 196(C), pages 66-74.
    3. Buesa, I. & Torres, N. & Tortosa, I. & Marín, D. & Villa-Llop, A. & Douthe, C. & Santesteban, L.G. & Medrano, H. & Escalona, J.M., 2023. "Conventional and newly bred rootstock effects on the ecophysiological response of Vitis vinifera L. cv. Tempranillo," Agricultural Water Management, Elsevier, vol. 289(C).
    4. Fraga, Helder & Santos, João A., 2018. "Vineyard mulching as a climate change adaptation measure: Future simulations for Alentejo, Portugal," Agricultural Systems, Elsevier, vol. 164(C), pages 107-115.
    5. Costa, J.M. & Egipto, R. & Sánchez-Virosta, A. & Lopes, C.M. & Chaves, M.M., 2019. "Canopy and soil thermal patterns to support water and heat stress management in vineyards," Agricultural Water Management, Elsevier, vol. 216(C), pages 484-496.
    6. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    7. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).
    8. André Vizinho & David Avelar & Cristina Branquinho & Tiago Capela Lourenço & Silvia Carvalho & Alice Nunes & Leonor Sucena-Paiva & Hugo Oliveira & Ana Lúcia Fonseca & Filipe Duarte Santos & Maria José, 2021. "Framework for Climate Change Adaptation of Agriculture and Forestry in Mediterranean Climate Regions," Land, MDPI, vol. 10(2), pages 1-33, February.
    9. Francisco Jesús García-Navarro & Raimundo Jiménez-Ballesta & Jesús Antonio López Perales & Caridad Perez & Jose Angel Amorós & Sandra Bravo, 2023. "Sustainable Viticulture in the Valdepeñas Protected Designation of Origin: From Soil Quality to Management in Vitis vinifera," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    10. Sara Tokhi Arab & Tofael Ahamed, 2023. "Near-real-time drought monitoring and assessment for vineyard production on a regional scale with standard precipitation and vegetation indices using Landsat and CHIRPS datasets," Asia-Pacific Journal of Regional Science, Springer, vol. 7(2), pages 591-614, June.
    11. Lisa Pizzol & Gloria Luzzani & Paolo Criscione & Luca Barro & Carlo Bagnoli & Ettore Capri, 2021. "The Role of Corporate Social Responsibility in the Wine Industry: The Case Study of Veneto and Friuli Venezia Giulia," Sustainability, MDPI, vol. 13(23), pages 1-15, November.
    12. Daniele Masseroni & Bianca Ortuani & Martina Corti & Pietro Marino Gallina & Giacomo Cocetta & Antonio Ferrante & Arianna Facchi, 2017. "Assessing the Reliability of Thermal and Optical Imaging Techniques for Detecting Crop Water Status under Different Nitrogen Levels," Sustainability, MDPI, vol. 9(9), pages 1-20, August.
    13. Santesteban, L.G. & Di Gennaro, S.F. & Herrero-Langreo, A. & Miranda, C. & Royo, J.B. & Matese, A., 2017. "High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard," Agricultural Water Management, Elsevier, vol. 183(C), pages 49-59.
    14. Albrizio, R. & Puig-Sirera, À. & Sellami, M.H. & Guida, G. & Basile, A. & Bonfante, A. & Gambuti, A. & Giorio, P., 2023. "Water stress, yield, and grape quality in a hilly rainfed “Aglianico” vineyard grown in two different soils along a slope," Agricultural Water Management, Elsevier, vol. 279(C).
    15. Luca Nerva & Walter Chitarra & Gianni Fila & Lorenzo Lovat & Federica Gaiotti, 2023. "Variability in Stomatal Adaptation to Drought among Grapevine Cultivars: Genotype-Dependent Responses," Agriculture, MDPI, vol. 13(12), pages 1-10, November.
    16. Yang Zhang & Jing Shen & Yu Li, 2018. "Atmospheric Environment Vulnerability Cause Analysis for the Beijing-Tianjin-Hebei Metropolitan Region," IJERPH, MDPI, vol. 15(1), pages 1-21, January.
    17. Alrajhi, Abdullah & Beecham, Simon & Hassanli, Ali, 2017. "Effects of partial root-zone drying irrigation and water quality on soil physical and chemical properties," Agricultural Water Management, Elsevier, vol. 182(C), pages 117-125.
    18. Moritz Wagner & Peter Stanbury & Tabea Dietrich & Johanna Döring & Joachim Ewert & Carlotta Foerster & Maximilian Freund & Matthias Friedel & Claudia Kammann & Mirjam Koch & Tom Owtram & Hans Reiner S, 2023. "Developing a Sustainability Vision for the Global Wine Industry," Sustainability, MDPI, vol. 15(13), pages 1-29, July.
    19. Atiqotun Fitriyah & Alvin Fatikhunnada & Fumi Okura & Bayu Dwi Apri Nugroho & Tasuku Kato, 2019. "Analysis of the Drought Mitigated Mechanism in Terraced Paddy Fields Using CWSI and TVDI Indices and Hydrological Monitoring," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    20. King, B.A. & Tarkalson, D.D. & Sharma, V. & Bjorneberg, D.L., 2021. "Thermal Crop Water Stress Index Base Line Temperatures for Sugarbeet in Arid Western U.S," Agricultural Water Management, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:176:y:2016:i:c:p:80-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.