IDEAS home Printed from https://ideas.repec.org/a/gam/jgeogr/v2y2022i2p21-340d834145.html
   My bibliography  Save this article

Analysis of Unmanned Aerial System (UAS) Sensor Data for Natural Resource Applications: A Review

Author

Listed:
  • Benjamin T. Fraser

    (Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824, USA)

  • Christine L. Bunyon

    (Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824, USA)

  • Sarah Reny

    (Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824, USA)

  • Isabelle Sophia Lopez

    (Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824, USA)

  • Russell G. Congalton

    (Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824, USA)

Abstract

Unmanned Aerial Systems (UAS, UAV, or drones) have become an effective tool for applications in natural resources since the start of the 21st century. With their associated hardware and software technologies, UAS sensor data have provided high resolution and high accuracy results in a range of disciplines. Despite these achievements, only minimal progress has been made in (1) establishing standard operating practices and (2) communicating both the limitations and necessary next steps for future research. In this review of literature published between 2016 and 2022, UAS applications in forestry, freshwater ecosystems, grasslands and shrublands, and agriculture were synthesized to discuss the status and trends in UAS sensor data collection and processing. Two distinct conclusions were summarized from the over 120 UAS applications reviewed for this research. First, while each discipline exhibited similarities among their data collection and processing methods, best practices were not referenced in most instances. Second, there is still a considerable variability in the UAS sensor data methods described in UAS applications in natural resources, with fewer than half of the publications including an incomplete level of detail to replicate the study. If UAS are to increasingly provide data for important or complex challenges, they must be effectively utilized.

Suggested Citation

  • Benjamin T. Fraser & Christine L. Bunyon & Sarah Reny & Isabelle Sophia Lopez & Russell G. Congalton, 2022. "Analysis of Unmanned Aerial System (UAS) Sensor Data for Natural Resource Applications: A Review," Geographies, MDPI, vol. 2(2), pages 1-38, June.
  • Handle: RePEc:gam:jgeogr:v:2:y:2022:i:2:p:21-340:d:834145
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-7086/2/2/21/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-7086/2/2/21/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clement E. Akumu & Eze O. Amadi & Samuel Dennis, 2021. "Application of Drone and WorldView-4 Satellite Data in Mapping and Monitoring Grazing Land Cover and Pasture Quality: Pre- and Post-Flooding," Land, MDPI, vol. 10(3), pages 1-13, March.
    2. Tainá T. Guimarães & Maurício R. Veronez & Emilie C. Koste & Eniuce M. Souza & Diego Brum & Luiz Gonzaga & Frederico F. Mauad, 2019. "Evaluation of Regression Analysis and Neural Networks to Predict Total Suspended Solids in Water Bodies from Unmanned Aerial Vehicle Images," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    3. Santesteban, L.G. & Di Gennaro, S.F. & Herrero-Langreo, A. & Miranda, C. & Royo, J.B. & Matese, A., 2017. "High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard," Agricultural Water Management, Elsevier, vol. 183(C), pages 49-59.
    4. Mohammad Fatin Fatihur Rahman & Shurui Fan & Yan Zhang & Lei Chen, 2021. "A Comparative Study on Application of Unmanned Aerial Vehicle Systems in Agriculture," Agriculture, MDPI, vol. 11(1), pages 1-26, January.
    5. Nahina Islam & Md Mamunur Rashid & Santoso Wibowo & Cheng-Yuan Xu & Ahsan Morshed & Saleh A. Wasimi & Steven Moore & Sk Mostafizur Rahman, 2021. "Early Weed Detection Using Image Processing and Machine Learning Techniques in an Australian Chilli Farm," Agriculture, MDPI, vol. 11(5), pages 1-13, April.
    6. Jérôme Théau & Étienne Lauzier-Hudon & Lydiane Aubé & Nicolas Devillers, 2021. "Estimation of forage biomass and vegetation cover in grasslands using UAV imagery," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel G. R. de Castro & Guido S. Berger & Alvaro Cantieri & Marco Teixeira & José Lima & Ana I. Pereira & Milena F. Pinto, 2023. "Adaptive Path Planning for Fusing Rapidly Exploring Random Trees and Deep Reinforcement Learning in an Agriculture Dynamic Environment UAVs," Agriculture, MDPI, vol. 13(2), pages 1-25, January.
    2. Puppala, Harish & Peddinti, Pranav R.T. & Tamvada, Jagannadha Pawan & Ahuja, Jaya & Kim, Byungmin, 2023. "Barriers to the adoption of new technologies in rural areas: The case of unmanned aerial vehicles for precision agriculture in India," Technology in Society, Elsevier, vol. 74(C).
    3. Benjamin Costello & Olusegun O. Osunkoya & Juan Sandino & William Marinic & Peter Trotter & Boyang Shi & Felipe Gonzalez & Kunjithapatham Dhileepan, 2022. "Detection of Parthenium Weed ( Parthenium hysterophorus L.) and Its Growth Stages Using Artificial Intelligence," Agriculture, MDPI, vol. 12(11), pages 1-23, November.
    4. Vasileios Moysiadis & Georgios Kokkonis & Stamatia Bibi & Ioannis Moscholios & Nikolaos Maropoulos & Panagiotis Sarigiannidis, 2023. "Monitoring Mushroom Growth with Machine Learning," Agriculture, MDPI, vol. 13(1), pages 1-17, January.
    5. Ramírez-Cuesta, J.M. & Intrigliolo, D.S. & Lorite, I.J. & Moreno, M.A. & Vanella, D. & Ballesteros, R. & Hernández-López, D. & Buesa, I., 2023. "Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model," Agricultural Water Management, Elsevier, vol. 281(C).
    6. Clement E. Akumu & Eze O. Amadi & Samuel Dennis, 2021. "Application of Drone and WorldView-4 Satellite Data in Mapping and Monitoring Grazing Land Cover and Pasture Quality: Pre- and Post-Flooding," Land, MDPI, vol. 10(3), pages 1-13, March.
    7. Xianguo Ren & Haiqing Tian & Kai Zhao & Dapeng Li & Ziqing Xiao & Yang Yu & Fei Liu, 2022. "Research on pH Value Detection Method during Maize Silage Secondary Fermentation Based on Computer Vision," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    8. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).
    9. Marcelo Araújo Junqueira Ferraz & Afrânio Gabriel da Silva Godinho Santiago & Adriano Teodoro Bruzi & Nelson Júnior Dias Vilela & Gabriel Araújo e Silva Ferraz, 2024. "Defoliation Categorization in Soybean with Machine Learning Algorithms and UAV Multispectral Data," Agriculture, MDPI, vol. 14(11), pages 1-13, November.
    10. Jan Lansky & Saqib Ali & Amir Masoud Rahmani & Mohammad Sadegh Yousefpoor & Efat Yousefpoor & Faheem Khan & Mehdi Hosseinzadeh, 2022. "Reinforcement Learning-Based Routing Protocols in Flying Ad Hoc Networks (FANET): A Review," Mathematics, MDPI, vol. 10(16), pages 1-60, August.
    11. Jerzy Chojnacki & Aleksandra Pachuta, 2021. "Impact of the Parameters of Spraying with a Small Unmanned Aerial Vehicle on the Distribution of Liquid on Young Cherry Trees," Agriculture, MDPI, vol. 11(11), pages 1-13, November.
    12. McCarthy, Nancy & Cavatassi, Romina & Maggio, Giuseppe, 2023. "IFAD RESEARCH SERIES 88: The Impact of Climate Change on Livestock Production in Mozambique," IFAD Research Series 330875, International Fund for Agricultural Development (IFAD).
    13. Xinle Zhang & Jian Cui & Huanjun Liu & Yongqi Han & Hongfu Ai & Chang Dong & Jiaru Zhang & Yunxiang Chu, 2023. "Weed Identification in Soybean Seedling Stage Based on Optimized Faster R-CNN Algorithm," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    14. Alessandro Matese & Salvatore Filippo Di Gennaro, 2018. "Practical Applications of a Multisensor UAV Platform Based on Multispectral, Thermal and RGB High Resolution Images in Precision Viticulture," Agriculture, MDPI, vol. 8(7), pages 1-13, July.
    15. Haotian Pei & Youqiang Sun & He Huang & Wei Zhang & Jiajia Sheng & Zhiying Zhang, 2022. "Weed Detection in Maize Fields by UAV Images Based on Crop Row Preprocessing and Improved YOLOv4," Agriculture, MDPI, vol. 12(7), pages 1-18, July.
    16. Nur Adibah Mohidem & Nik Norasma Che’Ya & Abdul Shukor Juraimi & Wan Fazilah Fazlil Ilahi & Muhammad Huzaifah Mohd Roslim & Nursyazyla Sulaiman & Mohammadmehdi Saberioon & Nisfariza Mohd Noor, 2021. "How Can Unmanned Aerial Vehicles Be Used for Detecting Weeds in Agricultural Fields?," Agriculture, MDPI, vol. 11(10), pages 1-27, October.
    17. El-Sayed M. El-Kenawy & Nima Khodadadi & Seyedali Mirjalili & Tatiana Makarovskikh & Mostafa Abotaleb & Faten Khalid Karim & Hend K. Alkahtani & Abdelaziz A. Abdelhamid & Marwa M. Eid & Takahiko Horiu, 2022. "Metaheuristic Optimization for Improving Weed Detection in Wheat Images Captured by Drones," Mathematics, MDPI, vol. 10(23), pages 1-30, November.
    18. Aili Qu & Zhipeng Yan & Haiyan Wei & Liefei Ma & Ruipeng Gu & Qianfeng Li & Weiwei Zhang & Yutan Wang, 2022. "Research on Grape-Planting Structure Perception Method Based on Unmanned Aerial Vehicle Multispectral Images in the Field," Agriculture, MDPI, vol. 12(11), pages 1-16, November.
    19. Shirin Ghatrehsamani & Gaurav Jha & Writuparna Dutta & Faezeh Molaei & Farshina Nazrul & Mathieu Fortin & Sangeeta Bansal & Udit Debangshi & Jasmine Neupane, 2023. "Artificial Intelligence Tools and Techniques to Combat Herbicide Resistant Weeds—A Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    20. Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgeogr:v:2:y:2022:i:2:p:21-340:d:834145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.