Thermal Crop Water Stress Index Base Line Temperatures for Sugarbeet in Arid Western U.S
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2020.106459
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- King, B.A. & Shellie, K.C., 2016. "Evaluation of neural network modeling to predict non-water-stressed leaf temperature in wine grape for calculation of crop water stress index," Agricultural Water Management, Elsevier, vol. 167(C), pages 38-52.
- Pou, Alícia & Diago, Maria P. & Medrano, Hipólito & Baluja, Javier & Tardaguila, Javier, 2014. "Validation of thermal indices for water status identification in grapevine," Agricultural Water Management, Elsevier, vol. 134(C), pages 60-72.
- O'Shaughnessy, S.A. & Evett, S.R. & Colaizzi, P.D. & Howell, T.A., 2011. "Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton," Agricultural Water Management, Elsevier, vol. 98(10), pages 1523-1535, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Minguo & Wu, Xiaojuan & Yang, Huimin, 2022. "Evapotranspiration characteristics and soil water balance of alfalfa grasslands under regulated deficit irrigation in the inland arid area of Midwestern China," Agricultural Water Management, Elsevier, vol. 260(C).
- Katimbo, Abia & Rudnick, Daran R. & DeJonge, Kendall C. & Lo, Tsz Him & Qiao, Xin & Franz, Trenton E. & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Crop water stress index computation approaches and their sensitivity to soil water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
- Ramírez-Cuesta, J.M. & Ortuño, M.F. & Gonzalez-Dugo, V. & Zarco-Tejada, P.J. & Parra, M. & Rubio-Asensio, J.S. & Intrigliolo, D.S., 2022. "Assessment of peach trees water status and leaf gas exchange using on-the-ground versus airborne-based thermal imagery," Agricultural Water Management, Elsevier, vol. 267(C).
- Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Krista C. Shellie & Bradley A. King, 2020. "Application of a Daily Crop Water Stress Index to Deficit Irrigate Malbec Grapevine under Semi-Arid Conditions," Agriculture, MDPI, vol. 10(11), pages 1-17, October.
- Ramírez-Cuesta, J.M. & Ortuño, M.F. & Gonzalez-Dugo, V. & Zarco-Tejada, P.J. & Parra, M. & Rubio-Asensio, J.S. & Intrigliolo, D.S., 2022. "Assessment of peach trees water status and leaf gas exchange using on-the-ground versus airborne-based thermal imagery," Agricultural Water Management, Elsevier, vol. 267(C).
- Levin, Alexander D., 2019. "Re-evaluating pressure chamber methods of water status determination in field-grown grapevine (Vitis spp.)," Agricultural Water Management, Elsevier, vol. 221(C), pages 422-429.
- Kumar, Navsal & Adeloye, Adebayo J. & Shankar, Vijay & Rustum, Rabee, 2020. "Neural computing modelling of the crop water stress index," Agricultural Water Management, Elsevier, vol. 239(C).
- King, B.A. & Shellie, K.C., 2016. "Evaluation of neural network modeling to predict non-water-stressed leaf temperature in wine grape for calculation of crop water stress index," Agricultural Water Management, Elsevier, vol. 167(C), pages 38-52.
- Roei Grimberg & Meir Teitel & Shay Ozer & Asher Levi & Avi Levy, 2022. "Estimation of Greenhouse Tomato Foliage Temperature Using DNN and ML Models," Agriculture, MDPI, vol. 12(7), pages 1-12, July.
- Veysi, Shadman & Naseri, Abd Ali & Hamzeh, Saeid & Bartholomeus, Harm, 2017. "A satellite based crop water stress index for irrigation scheduling in sugarcane fields," Agricultural Water Management, Elsevier, vol. 189(C), pages 70-86.
- Katimbo, Abia & Rudnick, Daran R. & DeJonge, Kendall C. & Lo, Tsz Him & Qiao, Xin & Franz, Trenton E. & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Crop water stress index computation approaches and their sensitivity to soil water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
- Garibay, Victoria M. & Kothari, Kritika & Ale, Srinivasulu & Gitz, Dennis C. & Morgan, Gaylon D. & Munster, Clyde L., 2019. "Determining water-use-efficient irrigation strategies for cotton using the DSSAT CSM CROPGRO-cotton model evaluated with in-season data," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
- Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
- Pappalardo, S. & Consoli, S. & Longo-Minnolo, G. & Vanella, D. & Longo, D. & Guarrera, S. & D’Emilio, A. & Ramírez-Cuesta, J.M., 2023. "Performance evaluation of a low-cost thermal camera for citrus water status estimation," Agricultural Water Management, Elsevier, vol. 288(C).
- Daniele Masseroni & Bianca Ortuani & Martina Corti & Pietro Marino Gallina & Giacomo Cocetta & Antonio Ferrante & Arianna Facchi, 2017. "Assessing the Reliability of Thermal and Optical Imaging Techniques for Detecting Crop Water Status under Different Nitrogen Levels," Sustainability, MDPI, vol. 9(9), pages 1-20, August.
- Candogan, Burak Nazmi & Sincik, Mehmet & Buyukcangaz, Hakan & Demirtas, Cigdem & Goksoy, Abdurrahim Tanju & Yazgan, Senih, 2013. "Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 113-121.
- Fan, Yubing & Himanshu, Sushil K. & Ale, Srinivasulu & DeLaune, Paul B. & Zhang, Tian & Park, Seong C. & Colaizzi, Paul D. & Evett, Steven R. & Baumhardt, R. Louis, 2022. "The synergy between water conservation and economic profitability of adopting alternative irrigation systems for cotton production in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 262(C).
- Santesteban, L.G. & Di Gennaro, S.F. & Herrero-Langreo, A. & Miranda, C. & Royo, J.B. & Matese, A., 2017. "High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard," Agricultural Water Management, Elsevier, vol. 183(C), pages 49-59.
- Colaizzi, Paul D. & O’Shaughnessy, Susan A. & Evett, Steve R. & Mounce, Ryan B., 2017. "Crop evapotranspiration calculation using infrared thermometers aboard center pivots," Agricultural Water Management, Elsevier, vol. 187(C), pages 173-189.
- O’Shaughnessy, Susan A. & Evett, Steven R. & Colaizzi, Paul D., 2015. "Dynamic prescription maps for site-specific variable rate irrigation of cotton," Agricultural Water Management, Elsevier, vol. 159(C), pages 123-138.
- Marcella Michela Giuliani & Eugenio Nardella & Anna Gagliardi & Giuseppe Gatta, 2017. "Deficit Irrigation and Partial Root-Zone Drying Techniques in Processing Tomato Cultivated under Mediterranean Climate Conditions," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
- Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Trout, Thomas J., 2016. "Estimating maize water stress by standard deviation of canopy temperature in thermal imagery," Agricultural Water Management, Elsevier, vol. 177(C), pages 400-409.
- Melo, Leonardo Leite de & Melo, Verônica Gaspar Martins Leite de & Marques, Patrícia Angélica Alves & Frizzone, Jose Antônio & Coelho, Rubens Duarte & Romero, Roseli Aparecida Francelin & Barros, Timó, 2022. "Deep learning for identification of water deficits in sugarcane based on thermal images," Agricultural Water Management, Elsevier, vol. 272(C).
More about this item
Keywords
sugarbeet; canopy temperature; irrigation scheduling; water stress;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377419316191. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.