IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v155y2015icp22-39.html
   My bibliography  Save this article

Compensatory uptake functions in empirical macroscopic root water uptake models – Experimental and numerical analysis

Author

Listed:
  • Albasha, Rami
  • Mailhol, Jean-Claude
  • Cheviron, Bruno

Abstract

Macroscopic empirical root water uptake (RWU) models are often used in hydrological studies to predict water dynamics through the soil–plant–atmosphere continuum. RWU in macroscopic models is highly dependent on root density distribution (RDD). Therefore, compensatory uptake mechanisms are being increasingly considered to remedy this weakness. A common formulation of compensatory functions is to relate compensatory uptake rate to the plant water-stress status. This paper examines the efficiency of such compensatory functions to reduce the sensitivity of simulated actual transpiration (Ta), drainage (Draina) and RWU patterns to RDD. The possibility to replace the compensatory RWU functions by an adequate description of RDD is also discussed. The study was based on experimental and numerical analysis of two-dimensional soil-water dynamics of 11 maize plots, irrigated using sprinkler (Asp), subsurface drip (SDI) systems, or rainfed (RF). Soil-water dynamics were simulated using a physically-based soil-water flow model coupled to a macroscopic empirical compensatory RWU model. For each plot, simulation scenarios involved crossing 6 RDD profiles with 6 compensatory levels. RDD was found to be the main factor in the determination of RWU patterns, Ta and Draina rates, with and without the compensatory mechanism. The use of a water-tracking RDD, i.e., higher uptake intensity in expected wetter soil regions, was found a surrogate for compensatory RWU functions in surface-watering simulations (Asp and RF). However, in SDI simulations, a water-tracking RDD should be combined to a high level of compensatory uptake to satisfactorily reproduce real RWU patterns. Our results further suggest that the compensatory RWU process is independent of the plant stress status and should be seen as a response to heterogeneous soil-water distribution. Our results contribute to the identification of optimum parameterization of empirical RWU models as a function of watering methods.

Suggested Citation

  • Albasha, Rami & Mailhol, Jean-Claude & Cheviron, Bruno, 2015. "Compensatory uptake functions in empirical macroscopic root water uptake models – Experimental and numerical analysis," Agricultural Water Management, Elsevier, vol. 155(C), pages 22-39.
  • Handle: RePEc:eee:agiwat:v:155:y:2015:i:c:p:22-39
    DOI: 10.1016/j.agwat.2015.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415000852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Skaggs, Todd H. & van Genuchten, Martinus Th. & Shouse, Peter J. & Poss, James A., 2006. "Macroscopic approaches to root water uptake as a function of water and salinity stress," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 140-149, November.
    2. Homaee, M. & Dirksen, C. & Feddes, R. A., 2002. "Simulation of root water uptake: I. Non-uniform transient salinity using different macroscopic reduction functions," Agricultural Water Management, Elsevier, vol. 57(2), pages 89-109, October.
    3. Khaledian, M.R. & Mailhol, J.C. & Ruelle, P. & Rosique, P., 2009. "Adapting PILOTE model for water and yield management under direct seeding system: The case of corn and durum wheat in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 96(5), pages 757-770, May.
    4. M.R. Khaledian & J.C. Mailhol & P. Ruelle & J.L. Rosique, 2009. "Adapting PILOTE model for water and yield management under direct seeding system: The case of corn and durum wheat in a Mediterranean context," Post-Print hal-00454543, HAL.
    5. Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
    6. Kandelous, Maziar M. & Kamai, Tamir & Vrugt, Jasper A. & Šimůnek, Jiří & Hanson, Blaine & Hopmans, Jan W., 2012. "Evaluation of subsurface drip irrigation design and management parameters for alfalfa," Agricultural Water Management, Elsevier, vol. 109(C), pages 81-93.
    7. Mailhol, Jean Claude & Ruelle, Pierre & Walser, Sabine & Schütze, Niels & Dejean, Cyril, 2011. "Analysis of AET and yield predictions under surface and buried drip irrigation systems using the Crop Model PILOTE and Hydrus-2D," Agricultural Water Management, Elsevier, vol. 98(6), pages 1033-1044, April.
    8. Homaee, M. & Feddes, R. A. & Dirksen, C., 2002. "Simulation of root water uptake: II. Non-uniform transient water stress using different reduction functions," Agricultural Water Management, Elsevier, vol. 57(2), pages 111-126, October.
    9. Mailhol, Jean Claude & Olufayo, Ayorinde A. & Ruelle, Pierre, 1997. "Sorghum and sunflower evapotranspiration and yield from simulated leaf area index," Agricultural Water Management, Elsevier, vol. 35(1-2), pages 167-182, December.
    10. Shouse, Peter J. & Ayars, James E. & Simunek, Jirí, 2011. "Simulating root water uptake from a shallow saline groundwater resource," Agricultural Water Management, Elsevier, vol. 98(5), pages 784-790, March.
    11. Šimůnek, Jiří & Hopmans, Jan W., 2009. "Modeling compensated root water and nutrient uptake," Ecological Modelling, Elsevier, vol. 220(4), pages 505-521.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Huang & Wei Dong & Luguang Liu & Tiesong Hu & Shaobin Pan & Xiaowei Yang & Jianan Qin, 2024. "Modeling and Analysis of Rice Root Water Uptake under the Dual Stresses of Drought and Waterlogging," Agriculture, MDPI, vol. 14(4), pages 1-19, March.
    2. Margarita A. Petoussi & Nicolas Kalogerakis, 2023. "Mathematical Modeling of Pilot Scale Olive Mill Wastewater Phytoremediation Units," Sustainability, MDPI, vol. 15(11), pages 1-36, May.
    3. Uniyal, Bhumika & Dietrich, Jörg, 2019. "Modifying Automatic Irrigation in SWAT for Plant Water Stress scheduling," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Mailhol, J.-C. & Albasha, R. & Cheviron, B. & Lopez, J.-M. & Ruelle, P. & Dejean, C., 2018. "The PILOTE-N model for improving water and nitrogen management practices: Application in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 204(C), pages 162-179.
    5. Thomas, Anooja & Yadav, Brijesh Kumar & Šimůnek, Jiří, 2024. "Water uptake by plants under nonuniform soil moisture conditions: A comprehensive numerical and experimental analysis," Agricultural Water Management, Elsevier, vol. 292(C).
    6. Wang, Tianshu & Xu, Yanqi & Zuo, Qiang & Shi, Jianchu & Wu, Xun & Liu, Lining & Sheng, Jiandong & Jiang, Pingan & Ben-Gal, Alon, 2023. "Evaluating and improving soil water and salinity stress response functions for root water uptake," Agricultural Water Management, Elsevier, vol. 287(C).
    7. Appels, Willemijn M. & Karimi, Rezvan, 2021. "Analysis of soil wetting patterns in subsurface drip irrigation systems – Indoor alfalfa experiments," Agricultural Water Management, Elsevier, vol. 250(C).
    8. Mishari A. Alnaim & Magdy S. Mohamed & Maged Mohammed & Muhammad Munir, 2022. "Effects of Automated Irrigation Systems and Water Regimes on Soil Properties, Water Productivity, Yield and Fruit Quality of Date Palm," Agriculture, MDPI, vol. 12(3), pages 1-21, February.
    9. Xufeng Li & Juanjuan Ma & Xihuan Sun & Lijian Zheng & Ruixia Chen & Jianglong An, 2023. "Estimating the Effects of Deficit Irrigation on Water Absorption and Utilization of Tomatoes Grown in Greenhouse with Hydrus-1D Model," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    10. Aixia, Ren & Weifeng, Zhao & Anwar, Sumera & Wen, Lin & Pengcheng, Ding & Ruixuan, Hao & Peiru, Wang & Rong, Zhong & Jin, Tong & Zhiqiang, Gao & Min, Sun, 2022. "Effects of tillage and seasonal variation of rainfall on soil water content and root growth distribution of winter wheat under rainfed conditions of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 268(C).
    11. Jha, Shiva K. & Gao, Yang & Liu, Hao & Huang, Zhongdong & Wang, Guangshuai & Liang, Yueping & Duan, Aiwang, 2017. "Root development and water uptake in winter wheat under different irrigation methods and scheduling for North China," Agricultural Water Management, Elsevier, vol. 182(C), pages 139-150.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    2. Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
    3. Elamri, Y. & Cheviron, B. & Lopez, J.-M. & Dejean, C. & Belaud, G., 2018. "Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces," Agricultural Water Management, Elsevier, vol. 208(C), pages 440-453.
    4. Liu, Lining & Wang, Tianshu & Wang, Lichun & Wu, Xun & Zuo, Qiang & Shi, Jianchu & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2022. "Plant water deficit index-based irrigation under conditions of salinity," Agricultural Water Management, Elsevier, vol. 269(C).
    5. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    6. M.R. Khaledian & J.C. Mailhol & P. Ruelle & C. Dejean, 2013. "Effect of cropping strategies on the irrigation water productivity of durum wheat," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(1), pages 29-36.
    7. Mailhol, J.-C. & Albasha, R. & Cheviron, B. & Lopez, J.-M. & Ruelle, P. & Dejean, C., 2018. "The PILOTE-N model for improving water and nitrogen management practices: Application in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 204(C), pages 162-179.
    8. Thomas, Anooja & Yadav, Brijesh Kumar & Šimůnek, Jiří, 2024. "Water uptake by plants under nonuniform soil moisture conditions: A comprehensive numerical and experimental analysis," Agricultural Water Management, Elsevier, vol. 292(C).
    9. Xu, Xu & Huang, Guanhua & Sun, Chen & Pereira, Luis S. & Ramos, Tiago B. & Huang, Quanzhong & Hao, Yuanyuan, 2013. "Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 125(C), pages 46-60.
    10. Sebastian Kloss & Raji Pushpalatha & Kefasi Kamoyo & Niels Schütze, 2012. "Evaluation of Crop Models for Simulating and Optimizing Deficit Irrigation Systems in Arid and Semi-arid Countries Under Climate Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 997-1014, March.
    11. Shuang Liu & Yuru Gao & Huilin Lang & Yong Liu & Hong Zhang, 2022. "Effects of Conventional Tillage and No-Tillage Systems on Maize ( Zea mays L.) Growth and Yield, Soil Structure, and Water in Loess Plateau of China: Field Experiment and Modeling Studies," Land, MDPI, vol. 11(11), pages 1-14, October.
    12. Wang, Lichun & Shi, Jianchu & Zuo, Qiang & Zheng, Wenjuan & Zhu, Xiangming, 2012. "Optimizing parameters of salinity stress reduction function using the relationship between root-water-uptake and root nitrogen mass of winter wheat," Agricultural Water Management, Elsevier, vol. 104(C), pages 142-152.
    13. Saadat, Saeed & Homaee, Mehdi, 2015. "Modeling sorghum response to irrigation water salinity at early growth stage," Agricultural Water Management, Elsevier, vol. 152(C), pages 119-124.
    14. Richard, Bastien & Bonté, Bruno & Delmas, Magalie & Braud, Isabelle & Cheviron, Bruno & Veyssier, Julien & Barreteau, Olivier, 2022. "A co-simulation approach to study the impact of gravity collective irrigation constraints on plant dynamics in Southern France," Agricultural Water Management, Elsevier, vol. 262(C).
    15. Shuang Liu & Jianye Li & Xingyi Zhang, 2022. "Simulations of Soil Water and Heat Processes for No Tillage and Conventional Tillage Systems in Mollisols of China," Land, MDPI, vol. 11(3), pages 1-17, March.
    16. Nayebloie, Fatemeh & Kouchakzadeh, Mahdi & Ebrahimi, Kumars & Homaee, Mahdi & Abbasi, Fariborz, 2022. "Improving fertigation efficiency by numerical modelling in a lettuce subsurface drip irrigation farm," Agricultural Water Management, Elsevier, vol. 270(C).
    17. Liu, S. & Yang, J.Y. & Zhang, X.Y. & Drury, C.F. & Reynolds, W.D. & Hoogenboom, G., 2013. "Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China," Agricultural Water Management, Elsevier, vol. 123(C), pages 32-44.
    18. Qiao, D.M. & Shi, H.B. & Pang, H.B. & Qi, X.B. & Plauborg, F., 2010. "Estimating plant root water uptake using a neural network approach," Agricultural Water Management, Elsevier, vol. 98(2), pages 251-260, December.
    19. Barnard, J.H. & Bennie, A.T.P. & van Rensburg, L.D. & Preez, C.C. du, 2015. "SWAMP: A soil layer water supply model for simulating macroscopic crop water uptake under osmotic stress," Agricultural Water Management, Elsevier, vol. 148(C), pages 150-163.
    20. Mailhol, Jean Claude & Ruelle, Pierre & Walser, Sabine & Schütze, Niels & Dejean, Cyril, 2011. "Analysis of AET and yield predictions under surface and buried drip irrigation systems using the Crop Model PILOTE and Hydrus-2D," Agricultural Water Management, Elsevier, vol. 98(6), pages 1033-1044, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:155:y:2015:i:c:p:22-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.