IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v287y2023ics0378377423003165.html
   My bibliography  Save this article

Evaluating and improving soil water and salinity stress response functions for root water uptake

Author

Listed:
  • Wang, Tianshu
  • Xu, Yanqi
  • Zuo, Qiang
  • Shi, Jianchu
  • Wu, Xun
  • Liu, Lining
  • Sheng, Jiandong
  • Jiang, Pingan
  • Ben-Gal, Alon

Abstract

Many functions have been proposed to describe the response of root water uptake to water and/or salinity stresses. In practice, choosing a reliable stress response function is challenging, particularly when water and salinity stresses occur simultaneously. To explore and quantify the effects of soil water and salinity conditions, separately and combined, on root water uptake, two experiments culturing winter wheat in artificial climate chambers were conducted with various water and salinity levels. As the key index, plant water status was evaluated by: a) considering the relative position of water and salinity to roots; b) rectifying estimation of potential transpiration for stressed plants; c) excluding data during recovery periods dominated by the hysteresis process of historical stress; and d) quantifying the interaction between water and salinity stresses. Including only one fitting parameter and two water or salinity thresholds with clear physical meaning and available recommendations, concave-convex function could quantify the effects of water or salinity stress more accurately than the others, leading to more reliable estimation of relative transpiration rate (RMSE < 0.07, R2 > 0.91, MAE < 0.24). Under combined water-salinity stress conditions, neither an additive nor multiplicative approach was able to describe the interaction accurately. In addition to cumulative effect, by quantifying cross-adaptation effect with an exponential function, the multiplicative concave-convex functions significantly improved the estimation of relative transpiration rate for water- and salinity-stressed plants (RMSE < 0.08, R2 > 0.72, MAE < 0.28). Nevertheless, mechanisms underlying the interaction between water and salinity stresses are still unclear and should be further investigated. To avoid the hysteresis effect of historical stress, excluding data during recovery periods was helpful, but its quantitative characterization is also necessary for accurate simulation of root water uptake and should be further studied.

Suggested Citation

  • Wang, Tianshu & Xu, Yanqi & Zuo, Qiang & Shi, Jianchu & Wu, Xun & Liu, Lining & Sheng, Jiandong & Jiang, Pingan & Ben-Gal, Alon, 2023. "Evaluating and improving soil water and salinity stress response functions for root water uptake," Agricultural Water Management, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423003165
    DOI: 10.1016/j.agwat.2023.108451
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423003165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108451?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xudong & Zhao, Yong & Xiao, Weihua & Yang, Mingzhi & Shen, Yanjun & Min, Leilei, 2017. "Soil moisture dynamics and implications for irrigation of farmland with a deep groundwater table," Agricultural Water Management, Elsevier, vol. 192(C), pages 138-148.
    2. Skaggs, Todd H. & van Genuchten, Martinus Th. & Shouse, Peter J. & Poss, James A., 2006. "Macroscopic approaches to root water uptake as a function of water and salinity stress," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 140-149, November.
    3. Albasha, Rami & Mailhol, Jean-Claude & Cheviron, Bruno, 2015. "Compensatory uptake functions in empirical macroscopic root water uptake models – Experimental and numerical analysis," Agricultural Water Management, Elsevier, vol. 155(C), pages 22-39.
    4. Shi, Jianchu & Wu, Xun & Wang, Xiaoyu & Zhang, Mo & Han, Le & Zhang, Wenjing & Liu, Wen & Zuo, Qiang & Wu, Xiaoguang & Zhang, Hongfei & Ben-Gal, Alon, 2020. "Determining threshold values for root-soil water weighted plant water deficit index based smart irrigation," Agricultural Water Management, Elsevier, vol. 230(C).
    5. Homaee, M. & Dirksen, C. & Feddes, R. A., 2002. "Simulation of root water uptake: I. Non-uniform transient salinity using different macroscopic reduction functions," Agricultural Water Management, Elsevier, vol. 57(2), pages 89-109, October.
    6. Wu, Xun & Zhang, Wenjing & Liu, Wen & Zuo, Qiang & Shi, Jianchu & Yan, Xudong & Zhang, Hongfei & Xue, Xuzhang & Wang, Lichun & Zhang, Mo & Ben-Gal, Alon, 2017. "Root-weighted soil water status for plant water deficit index based irrigation scheduling," Agricultural Water Management, Elsevier, vol. 189(C), pages 137-147.
    7. Shi, Jianchu & Yasuor, Hagai & Yermiyahu, Uri & Zuo, Qiang & Ben-Gal, Alon, 2014. "Dynamic responses of wheat to drought and nitrogen stresses during re-watering cycles," Agricultural Water Management, Elsevier, vol. 146(C), pages 163-172.
    8. Shalhevet, Joseph, 1994. "Using water of marginal quality for crop production: major issues," Agricultural Water Management, Elsevier, vol. 25(3), pages 233-269, July.
    9. Chinnasamy, Pennan & Misra, Gourav & Shah, Tushaar & Maheshwari, Basant & Prathapar, Sanmugam, 2015. "Evaluating the effectiveness of water infrastructures for increasing groundwater recharge and agricultural production – A case study of Gujarat, India," Agricultural Water Management, Elsevier, vol. 158(C), pages 179-188.
    10. Wu, Xun & Zuo, Qiang & Shi, Jianchu & Wang, Lichun & Xue, Xuzhang & Ben-Gal, Alon, 2020. "Introducing water stress hysteresis to the Feddes empirical macroscopic root water uptake model," Agricultural Water Management, Elsevier, vol. 240(C).
    11. Homaee, M. & Feddes, R. A. & Dirksen, C., 2002. "Simulation of root water uptake: III. Non-uniform transient combined salinity and water stress," Agricultural Water Management, Elsevier, vol. 57(2), pages 127-144, October.
    12. Liu, Lining & Wang, Tianshu & Wang, Lichun & Wu, Xun & Zuo, Qiang & Shi, Jianchu & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2022. "Plant water deficit index-based irrigation under conditions of salinity," Agricultural Water Management, Elsevier, vol. 269(C).
    13. Rallo, Giovanni & Provenzano, Giuseppe, 2013. "Modelling eco-physiological response of table olive trees (Olea europaea L.) to soil water deficit conditions," Agricultural Water Management, Elsevier, vol. 120(C), pages 79-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Lining & Wang, Tianshu & Wang, Lichun & Wu, Xun & Zuo, Qiang & Shi, Jianchu & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2022. "Plant water deficit index-based irrigation under conditions of salinity," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Liu, Lining & Zuo, Qiang & Shi, Jianchu & Wu, Xun & Wei, Congmin & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2023. "Balancing economic benefits and environmental repercussions based on smart irrigation by regulating root zone water and salinity dynamics," Agricultural Water Management, Elsevier, vol. 285(C).
    3. Wu, Xun & Zuo, Qiang & Shi, Jianchu & Wang, Lichun & Xue, Xuzhang & Ben-Gal, Alon, 2020. "Introducing water stress hysteresis to the Feddes empirical macroscopic root water uptake model," Agricultural Water Management, Elsevier, vol. 240(C).
    4. Wu, Xun & Zhang, Wenjing & Liu, Wen & Zuo, Qiang & Shi, Jianchu & Yan, Xudong & Zhang, Hongfei & Xue, Xuzhang & Wang, Lichun & Zhang, Mo & Ben-Gal, Alon, 2017. "Root-weighted soil water status for plant water deficit index based irrigation scheduling," Agricultural Water Management, Elsevier, vol. 189(C), pages 137-147.
    5. Saadat, Saeed & Homaee, Mehdi, 2015. "Modeling sorghum response to irrigation water salinity at early growth stage," Agricultural Water Management, Elsevier, vol. 152(C), pages 119-124.
    6. Jalali, Vahidreza & Asadi Kapourchal, Safoora & Homaee, Mehdi, 2017. "Evaluating performance of macroscopic water uptake models at productive growth stages of durum wheat under saline conditions," Agricultural Water Management, Elsevier, vol. 180(PA), pages 13-21.
    7. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    8. Barnard, J.H. & Bennie, A.T.P. & van Rensburg, L.D. & Preez, C.C. du, 2015. "SWAMP: A soil layer water supply model for simulating macroscopic crop water uptake under osmotic stress," Agricultural Water Management, Elsevier, vol. 148(C), pages 150-163.
    9. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    10. Wang, Lichun & Shi, Jianchu & Zuo, Qiang & Zheng, Wenjuan & Zhu, Xiangming, 2012. "Optimizing parameters of salinity stress reduction function using the relationship between root-water-uptake and root nitrogen mass of winter wheat," Agricultural Water Management, Elsevier, vol. 104(C), pages 142-152.
    11. Zhang, Ting & Zuo, Qiang & Ma, Ning & Shi, Jianchu & Fan, Yuchuan & Wu, Xun & Wang, Lichun & Xue, Xuzhang & Ben-Gal, Alon, 2023. "Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop," Agricultural Water Management, Elsevier, vol. 286(C).
    12. Fan, Jinjie & Wu, Xun & Yu, Yangliu & Zuo, Qiang & Shi, Jianchu & Halpern, Moshe & Sheng, Jiandong & Jiang, Pingan & Ben-Gal, Alon, 2023. "Characterizing root-water-uptake of wheat under elevated CO2 concentration," Agricultural Water Management, Elsevier, vol. 275(C).
    13. Meng, Wenjie & Xing, Jinliang & Niu, Mu & Zuo, Qiang & Wu, Xun & Shi, Jianchu & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2023. "Optimizing fertigation schemes based on root distribution," Agricultural Water Management, Elsevier, vol. 275(C).
    14. Thomas, Anooja & Yadav, Brijesh Kumar & Šimůnek, Jiří, 2024. "Water uptake by plants under nonuniform soil moisture conditions: A comprehensive numerical and experimental analysis," Agricultural Water Management, Elsevier, vol. 292(C).
    15. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2016. "Towards modeling soil texture-specific sensitivity of wheat yield and water balance to climatic changes," Agricultural Water Management, Elsevier, vol. 177(C), pages 248-263.
    16. Xu, Xu & Huang, Guanhua & Sun, Chen & Pereira, Luis S. & Ramos, Tiago B. & Huang, Quanzhong & Hao, Yuanyuan, 2013. "Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 125(C), pages 46-60.
    17. Albasha, Rami & Mailhol, Jean-Claude & Cheviron, Bruno, 2015. "Compensatory uptake functions in empirical macroscopic root water uptake models – Experimental and numerical analysis," Agricultural Water Management, Elsevier, vol. 155(C), pages 22-39.
    18. Nayebloie, Fatemeh & Kouchakzadeh, Mahdi & Ebrahimi, Kumars & Homaee, Mahdi & Abbasi, Fariborz, 2022. "Improving fertigation efficiency by numerical modelling in a lettuce subsurface drip irrigation farm," Agricultural Water Management, Elsevier, vol. 270(C).
    19. Rashki, Paria & piri, halimeh & Khamari, Eisa, 2022. "Determining the production function and optimal irrigation depth of Roselle in deficit irrigation conditions and using potassium fertilizer," Agricultural Water Management, Elsevier, vol. 271(C).
    20. Qiao, D.M. & Shi, H.B. & Pang, H.B. & Qi, X.B. & Plauborg, F., 2010. "Estimating plant root water uptake using a neural network approach," Agricultural Water Management, Elsevier, vol. 98(2), pages 251-260, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423003165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.