IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v151y2015icp13-18.html
   My bibliography  Save this article

A mobile application to calculate optimum drip irrigation laterals

Author

Listed:
  • Sesma, J.
  • Molina-Martínez, J.M.
  • Cavas-Martínez, F.
  • Fernández-Pacheco, D.G.

Abstract

The parameters to be taken into account when installing a drip irrigation system include the diameters of piping to be used in the irrigation installation. Certain applications developed for PC permit an approximate calculation of these diameters outside the installation environment, which makes on-site optimization of the system difficult. This paper presents a software application developed for Android mobile devices by which the user can immediately evaluate the responsiveness of all of the available optimum commercial diameters to operational changes, such as changing water demands (e.g., cultivation, water needs, and spacing), types of emitters used in the installation, or lateral feeding (from an extreme or from an intermediate point). The input data mainly required by the application are: emitter flow rates, the number of emitters, the space between emitters, the average pressure in the lateral, and the pressure tolerance. As a result, the application indicates if each irrigation lateral is valid or not for the situation provided by the user, and displays some graphics of the pressures in the lateral that indicate the pressures at the system's extremities, which permits identification of the critical points of the irrigation lateral.

Suggested Citation

  • Sesma, J. & Molina-Martínez, J.M. & Cavas-Martínez, F. & Fernández-Pacheco, D.G., 2015. "A mobile application to calculate optimum drip irrigation laterals," Agricultural Water Management, Elsevier, vol. 151(C), pages 13-18.
  • Handle: RePEc:eee:agiwat:v:151:y:2015:i:c:p:13-18
    DOI: 10.1016/j.agwat.2014.09.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414003175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.09.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Egea, Gregorio & González-Real, María M. & Baille, Alain & Nortes, Pedro A. & Sánchez-Bel, Paloma & Domingo, Rafael, 2009. "The effects of contrasted deficit irrigation strategies on the fruit growth and kernel quality of mature almond trees," Agricultural Water Management, Elsevier, vol. 96(11), pages 1605-1614, November.
    2. Phogat, V. & Skewes, Mark A. & Mahadevan, M. & Cox, J.W., 2013. "Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González Perea, R. & Fernández García, I. & Martin Arroyo, M. & Rodríguez Díaz, J.A. & Camacho Poyato, E. & Montesinos, P., 2017. "Multiplatform application for precision irrigation scheduling in strawberries," Agricultural Water Management, Elsevier, vol. 183(C), pages 194-201.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    2. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    3. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    4. Egea, Gregorio & Nortes, Pedro A. & González-Real, María M. & Baille, Alain & Domingo, Rafael, 2010. "Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 97(1), pages 171-181, January.
    5. Gucci, Riccardo & Caruso, Giovanni & Gennai, Clizia & Esposto, Sonia & Urbani, Stefania & Servili, Maurizio, 2019. "Fruit growth, yield and oil quality changes induced by deficit irrigation at different stages of olive fruit development," Agricultural Water Management, Elsevier, vol. 212(C), pages 88-98.
    6. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    7. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    8. Laribi, A.I. & Palou, L. & Intrigliolo, D.S. & Nortes, P.A. & Rojas-Argudo, C. & Taberner, V. & Bartual, J. & Pérez-Gago, M.B., 2013. "Effect of sustained and regulated deficit irrigation on fruit quality of pomegranate cv. ‘Mollar de Elche’ at harvest and during cold storage," Agricultural Water Management, Elsevier, vol. 125(C), pages 61-70.
    9. Mirás-Avalos, José M. & Gonzalez-Dugo, Victoria & García-Tejero, Iván F. & López-Urrea, Ramón & Intrigliolo, Diego S. & Egea, Gregorio, 2023. "Quantitative analysis of almond yield response to irrigation regimes in Mediterranean Spain," Agricultural Water Management, Elsevier, vol. 279(C).
    10. He, Qinsi & Li, Sien & Kang, Shaozhong & Yang, Hanbo & Qin, Shujing, 2018. "Simulation of water balance in a maize field under film-mulching drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 252-260.
    11. Lipan, Leontina & Martín-Palomo, María J. & Sánchez-Rodríguez, Lucía & Cano-Lamadrid, Marina & Sendra, Esther & Hernández, Francisca & Burló, Francisco & Vázquez-Araújo, Laura & Andreu, Luis & Carbone, 2019. "Almond fruit quality can be improved by means of deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 217(C), pages 236-242.
    12. Egea, Gregorio & Fernández, José E. & Alcon, Francisco, 2017. "Financial assessment of adopting irrigation technology for plant-based regulated deficit irrigation scheduling in super high-density olive orchards," Agricultural Water Management, Elsevier, vol. 187(C), pages 47-56.
    13. Thao, Touyee & Culumber, Catherine M. & Poret-Peterson, Amisha T. & Zuber, Cameron A. & Holtz, Brent A. & Gao, Suduan, 2024. "Evaluating the seasonal effects of whole orchard recycling on water movement and nitrogen retention for a newly established almond orchard: Simulation using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 299(C).
    14. Gutiérrez-Gordillo, S. & Durán-Zuazo, V.H. & García-Tejero, I., 2019. "Response of three almond cultivars subjected to different irrigation regimes in Guadalquivir river basin," Agricultural Water Management, Elsevier, vol. 222(C), pages 72-81.
    15. Nayebloie, Fatemeh & Kouchakzadeh, Mahdi & Ebrahimi, Kumars & Homaee, Mahdi & Abbasi, Fariborz, 2022. "Improving fertigation efficiency by numerical modelling in a lettuce subsurface drip irrigation farm," Agricultural Water Management, Elsevier, vol. 270(C).
    16. Phogat, V. & Pitt, T. & Cox, J.W. & Šimůnek, J. & Skewes, M.A., 2018. "Soil water and salinity dynamics under sprinkler irrigated almond exposed to a varied salinity stress at different growth stages," Agricultural Water Management, Elsevier, vol. 201(C), pages 70-82.
    17. Xi, Benye & Bloomberg, Mark & Watt, Michael S. & Wang, Ye & Jia, Liming, 2016. "Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain," Agricultural Water Management, Elsevier, vol. 176(C), pages 243-254.
    18. Sakaguchi, A. & Yanai, Y. & Sasaki, H., 2019. "Subsurface irrigation system design for vegetable production using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 219(C), pages 12-18.
    19. Phogat, V. & Šimůnek, J. & Skewes, M.A. & Cox, J.W. & McCarthy, M.G., 2016. "Improving the estimation of evaporation by the FAO-56 dual crop coefficient approach under subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 178(C), pages 189-200.
    20. Vivaldi, Gaetano Alessandro & Camposeo, Salvatore & Romero-Trigueros, Cristina & Pedrero, Francisco & Caponio, Gabriele & Lopriore, Giuseppe & Álvarez, Sara, 2021. "Physiological responses of almond trees under regulated deficit irrigation using saline and desalinated reclaimed water," Agricultural Water Management, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:151:y:2015:i:c:p:13-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.