IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v279y2023ics0378377423000732.html
   My bibliography  Save this article

Quantitative analysis of almond yield response to irrigation regimes in Mediterranean Spain

Author

Listed:
  • Mirás-Avalos, José M.
  • Gonzalez-Dugo, Victoria
  • García-Tejero, Iván F.
  • López-Urrea, Ramón
  • Intrigliolo, Diego S.
  • Egea, Gregorio

Abstract

Almond plantations are expanding worldwide, specifically in Spain; the new orchards are often designed under more intensive systems in comparison to the traditional rainfed orchards frequently found in the Mediterranean Sea basin. In these new areas, water is the main limiting factor, and therefore, the present research is aimed at quantitatively analyzing previous findings obtained in irrigation field trials carried out in Spain with mature almond trees. The goal was to derive applied water-production functions and compare sustained and regulated deficit irrigation strategies to provide robust information on the marginal water productivity and the preferred irrigation option to be applied under water scarcity conditions. This quantitative analysis reported a yield increase as water application increased, with the highest potential yield of about 2500 kg/ha achieved with around 1000 mm of irrigation water applied. Under severe water restrictions, similar responses were observed regardless of the deficit irrigation technique employed. In contrast, under moderate water stress, it seems more advantageous to apply a regulated deficit irrigation strategy rather than a sustained deficit strategy. The reported results are useful for deriving more sustainable irrigation protocols and highlight the need to optimize other inputs in addition to water to take full advantage of the irrigation intensification to be carried out in the new almond plantations.

Suggested Citation

  • Mirás-Avalos, José M. & Gonzalez-Dugo, Victoria & García-Tejero, Iván F. & López-Urrea, Ramón & Intrigliolo, Diego S. & Egea, Gregorio, 2023. "Quantitative analysis of almond yield response to irrigation regimes in Mediterranean Spain," Agricultural Water Management, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:agiwat:v:279:y:2023:i:c:s0378377423000732
    DOI: 10.1016/j.agwat.2023.108208
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423000732
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Egea, Gregorio & González-Real, María M. & Baille, Alain & Nortes, Pedro A. & Sánchez-Bel, Paloma & Domingo, Rafael, 2009. "The effects of contrasted deficit irrigation strategies on the fruit growth and kernel quality of mature almond trees," Agricultural Water Management, Elsevier, vol. 96(11), pages 1605-1614, November.
    2. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    3. Puerto, P. & Domingo, R. & Torres, R. & Pérez-Pastor, A. & García-Riquelme, M., 2013. "Remote management of deficit irrigation in almond trees based on maximum daily trunk shrinkage. Water relations and yield," Agricultural Water Management, Elsevier, vol. 126(C), pages 33-45.
    4. Girona, J. & Mata, M. & Marsal, J., 2005. "Regulated deficit irrigation during the kernel-filling period and optimal irrigation rates in almond," Agricultural Water Management, Elsevier, vol. 75(2), pages 152-167, July.
    5. Egea, Gregorio & Nortes, Pedro A. & González-Real, María M. & Baille, Alain & Domingo, Rafael, 2010. "Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 97(1), pages 171-181, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gutiérrez-Gordillo, S. & Durán-Zuazo, V.H. & García-Tejero, I., 2019. "Response of three almond cultivars subjected to different irrigation regimes in Guadalquivir river basin," Agricultural Water Management, Elsevier, vol. 222(C), pages 72-81.
    2. Phogat, V. & Pitt, T. & Cox, J.W. & Šimůnek, J. & Skewes, M.A., 2018. "Soil water and salinity dynamics under sprinkler irrigated almond exposed to a varied salinity stress at different growth stages," Agricultural Water Management, Elsevier, vol. 201(C), pages 70-82.
    3. Phogat, V. & Skewes, Mark A. & Mahadevan, M. & Cox, J.W., 2013. "Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 1-11.
    4. Pérez-Pastor, A. & Ruiz-Sánchez, Mª C. & Domingo, R., 2014. "Effects of timing and intensity of deficit irrigation on vegetative and fruit growth of apricot trees," Agricultural Water Management, Elsevier, vol. 134(C), pages 110-118.
    5. Martín-Palomo, M.J. & Corell, M. & Girón, I. & Andreu, L. & Trigo, E. & López-Moreno, Y.E. & Torrecillas, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2019. "Pattern of trunk diameter fluctuations of almond trees in deficit irrigation scheduling during the first seasons," Agricultural Water Management, Elsevier, vol. 218(C), pages 115-123.
    6. Egea, Gregorio & Nortes, Pedro A. & González-Real, María M. & Baille, Alain & Domingo, Rafael, 2010. "Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 97(1), pages 171-181, January.
    7. López-López, Manuel & Espadafor, Mónica & Testi, Luca & Lorite, Ignacio Jesús & Orgaz, Francisco & Fereres, Elías, 2018. "Water use of irrigated almond trees when subjected to water deficits," Agricultural Water Management, Elsevier, vol. 195(C), pages 84-93.
    8. José Manuel Mirás-Avalos & Pedro Marco & Sergio Sánchez & Beatriz Bielsa & María José Rubio Cabetas & Vicente González, 2022. "Soil Quality Index of Young and Differently Managed Almond Orchards under Mediterranean Conditions," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    9. Vivaldi, Gaetano Alessandro & Camposeo, Salvatore & Romero-Trigueros, Cristina & Pedrero, Francisco & Caponio, Gabriele & Lopriore, Giuseppe & Álvarez, Sara, 2021. "Physiological responses of almond trees under regulated deficit irrigation using saline and desalinated reclaimed water," Agricultural Water Management, Elsevier, vol. 258(C).
    10. Puerto, P. & Domingo, R. & Torres, R. & Pérez-Pastor, A. & García-Riquelme, M., 2013. "Remote management of deficit irrigation in almond trees based on maximum daily trunk shrinkage. Water relations and yield," Agricultural Water Management, Elsevier, vol. 126(C), pages 33-45.
    11. Navarro-Hellín, H. & Torres-Sánchez, R. & Soto-Valles, F. & Albaladejo-Pérez, C. & López-Riquelme, J.A. & Domingo-Miguel, R., 2015. "A wireless sensors architecture for efficient irrigation water management," Agricultural Water Management, Elsevier, vol. 151(C), pages 64-74.
    12. Martín-Palomo, MJ & Andreu, L. & Pérez-López, D. & Centeno, A. & Galindo, A. & Moriana, A. & Corell, M., 2022. "Trunk growth rate frequencies as water stress indicator in almond trees," Agricultural Water Management, Elsevier, vol. 271(C).
    13. Gasque, María & Martí, Pau & Granero, Beatriz & González-Altozano, Pablo, 2016. "Effects of long-term summer deficit irrigation on ‘Navelina’ citrus trees," Agricultural Water Management, Elsevier, vol. 169(C), pages 140-147.
    14. Wang, Huabing & Xie, Tianyun & Yu, Xiaohong & Zhang, Chi, 2021. "Simulation of soil loss under different climatic conditions and agricultural farming economic benefits: The example of Yulin City on Loess Plateau," Agricultural Water Management, Elsevier, vol. 244(C).
    15. Yu, Liuyang & Zhao, Xining & Gao, Xiaodong & Siddique, Kadambot H.M., 2020. "Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 228(C).
    16. Egea, Gregorio & González-Real, María M. & Baille, Alain & Nortes, Pedro A. & Sánchez-Bel, Paloma & Domingo, Rafael, 2009. "The effects of contrasted deficit irrigation strategies on the fruit growth and kernel quality of mature almond trees," Agricultural Water Management, Elsevier, vol. 96(11), pages 1605-1614, November.
    17. Lipan, Leontina & Martín-Palomo, María J. & Sánchez-Rodríguez, Lucía & Cano-Lamadrid, Marina & Sendra, Esther & Hernández, Francisca & Burló, Francisco & Vázquez-Araújo, Laura & Andreu, Luis & Carbone, 2019. "Almond fruit quality can be improved by means of deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 217(C), pages 236-242.
    18. Francesco Aiello & Graziella Bonanno, 2019. "Explaining Differences In Efficiency: A Meta‐Study On Local Government Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 33(3), pages 999-1027, July.
    19. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    20. Guo, Youzheng & Ma, Yingjun & Ding, Changjun & Di, Nan & Liu, Yang & Tan, Jianbiao & Zhang, Shusen & Yu, Weichen & Gao, Guixi & Duan, Jie & Xi, Benye & Li, Ximeng, 2023. "Plant hydraulics provide guidance for irrigation management in mature polar plantation," Agricultural Water Management, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:279:y:2023:i:c:s0378377423000732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.