IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v299y2024ics0378377424002178.html
   My bibliography  Save this article

Evaluating the seasonal effects of whole orchard recycling on water movement and nitrogen retention for a newly established almond orchard: Simulation using HYDRUS-1D

Author

Listed:
  • Thao, Touyee
  • Culumber, Catherine M.
  • Poret-Peterson, Amisha T.
  • Zuber, Cameron A.
  • Holtz, Brent A.
  • Gao, Suduan

Abstract

Whole orchard recycling (WOR) is an emerging practice in perennial cropping systems and is an alternative to open or cogeneration burning. It is an orchard removal practice that incorporates large amounts of woody biomass back into the soil system. In this study, we utilized a soil hydrological model (HYDRUS-1D) to evaluate the seasonal effects of WOR on water movement and nitrogen (N) retention for a newly established almond orchard on a typical sandy loam soil in the Central Valley of California. Soil moisture and N content were monitored across the first five growing seasons from 2018 to 2022. The model was able to track seasonal moisture fluctuation nicely compared to observed data. Additionally, an increase in soil moisture was measured in the WOR treatments in surface soil (i.e., 0- to 15-cm depths) where biomass was incorporated, and N leaching was reduced when compared to the unamended control. Simulations suggest that with WOR, irrigation can be reduced by up to 20 % during the tree establishment stage with minimal effect on root water uptake. This reduction in applied water can increase farm water use efficiency and reduce operational expenses, e.g., cost of water and pumping. Likewise, the reduction in N leaching observed in both predicted results and laboratory analysis can further cut farm capital costs, e.g., fertilization, and lessen orchard environmental impacts. Overall, results from our simulation show a positive effect of WOR on soil ecosystem services and can potentially be a profitable strategy for orchard turnover. The results have important implications in reducing groundwater nitrate contamination in irrigated agriculture in the Central Valley of California and applicable to most parts of Southwestern United States.

Suggested Citation

  • Thao, Touyee & Culumber, Catherine M. & Poret-Peterson, Amisha T. & Zuber, Cameron A. & Holtz, Brent A. & Gao, Suduan, 2024. "Evaluating the seasonal effects of whole orchard recycling on water movement and nitrogen retention for a newly established almond orchard: Simulation using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002178
    DOI: 10.1016/j.agwat.2024.108882
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424002178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.