IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v126y2013icp85-96.html
   My bibliography  Save this article

Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns

Author

Listed:
  • Rodrigues, Gonçalo C.
  • Paredes, Paula
  • Gonçalves, José M.
  • Alves, Isabel
  • Pereira, Luis S.

Abstract

This study aims to assess the economic feasibility of full and deficit irrigated maize using center pivot, set sprinkler systems and drip tape systems through multicriteria analysis. Different irrigation treatments were evaluated and compared in terms of beneficial water use and physical and economical water productivity for two commodity prices and three irrigation systems scenarios applied to a medium and a large field of 5 and 32ha respectively. Results show that deficit treatments may lead to better water productivity indicators but deficit irrigation (DI) feasibility is highly dependent on the commodity prices. Various well-designed and managed pressurized irrigation systems’ scenarios – center-pivot, set sprinkler systems and drip tape systems – were compared and ranked using multicriteria analysis. For this, three different prioritization schemes were considered, one referring to water savings, another relative to economic results, and a third one representing a balanced situation between the first two. The rankings of alternative solutions were very sensitive to the decision-maker priorities, mainly when comparing water saving and economic results because the selected alternatives were generally not common to both priority schemes. However, some of the best alternatives for the balanced priorities scheme are common to the other two, thus suggesting a possible trade-off when selecting the best alternatives. Deficit irrigation strategies also rank differently for the various scenarios considered. The study shows that deficit irrigation with exception of mild DI is generally not economically feasible. The adoption of well designed and managed irrigation systems requires consideration of priorities of farm management in terms of water saving and economic results since that some water saving solutions do not allow appropriate recover of the investment costs, particularly with DI. Basing decisions upon multicriteria analysis allows farmers and decision-makers to better select irrigation systems and related management decisions. Results also indicate that appropriate support must be given to farmers when adopting high performance but expensive irrigation systems aimed at sustainable crop profitability.

Suggested Citation

  • Rodrigues, Gonçalo C. & Paredes, Paula & Gonçalves, José M. & Alves, Isabel & Pereira, Luis S., 2013. "Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns," Agricultural Water Management, Elsevier, vol. 126(C), pages 85-96.
  • Handle: RePEc:eee:agiwat:v:126:y:2013:i:c:p:85-96
    DOI: 10.1016/j.agwat.2013.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413001169
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Calejo, M.J. & Lamaddalena, N. & Teixeira, J.L. & Pereira, L.S., 2008. "Performance analysis of pressurized irrigation systems operating on-demand using flow-driven simulation models," Agricultural Water Management, Elsevier, vol. 95(2), pages 154-162, February.
    2. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    3. Tognetti, R. & Palladino, M. & Minnocci, A. & Delfine, S. & Alvino, A., 2003. "The response of sugar beet to drip and low-pressure sprinkler irrigation in southern Italy," Agricultural Water Management, Elsevier, vol. 60(2), pages 135-155, May.
    4. Popova, Zornitsa & Pereira, Luis S., 2011. "Modelling for maize irrigation scheduling using long term experimental data from Plovdiv region, Bulgaria," Agricultural Water Management, Elsevier, vol. 98(4), pages 675-683, February.
    5. Lamaddalena, Nicola & Pereira, Luis Santos, 2007. "Assessing the impact of flow regulators with a pressure-driven performance analysis model," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 27-35, May.
    6. Mouratiadou, Ioanna & Moran, Dominic, 2007. "Mapping public participation in the Water Framework Directive: A case study of the Pinios River Basin, Greece," Ecological Economics, Elsevier, vol. 62(1), pages 66-76, April.
    7. Basil Manos & Thomas Bournaris & Mohd Kamruzzaman & Moss Begum & Ara Anjuman & Jason Papathanasiou, 2006. "Regional Impact of Irrigation Water Pricing in Greece under Alternative Scenarios of European Policy: A Multicriteria Analysis," Regional Studies, Taylor & Francis Journals, vol. 40(9), pages 1055-1068.
    8. Wichelns, Dennis & Oster, J.D., 2006. "Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 114-127, November.
    9. López-Mata, E. & Tarjuelo, J.M. & de Juan, J.A. & Ballesteros, R. & Domínguez, A., 2010. "Effect of irrigation uniformity on the profitability of crops," Agricultural Water Management, Elsevier, vol. 98(1), pages 190-198, December.
    10. Riesgo, Laura & Gomez-Limon, Jose A., 2006. "Multi-criteria policy scenario analysis for public regulation of irrigated agriculture," Agricultural Systems, Elsevier, vol. 91(1-2), pages 1-28, November.
    11. Cabelguenne, M. & Debaeke, P. & Bouniols, A., 1999. "EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybea," Agricultural Systems, Elsevier, vol. 60(3), pages 175-196, June.
    12. Pedras, C.M.G. & Pereira, L.S. & Gonalves, J.M., 2009. "MIRRIG: A decision support system for design and evaluation of microirrigation systems," Agricultural Water Management, Elsevier, vol. 96(4), pages 691-701, April.
    13. Raghuwanshi, N. S. & Wallender, W. W., 1998. "Optimal furrow irrigation scheduling under heterogeneous conditions," Agricultural Systems, Elsevier, vol. 58(1), pages 39-55, September.
    14. Farré, I. & Faci, J.-M., 2009. "Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 96(3), pages 383-394, March.
    15. Goncalves, J.M. & Pereira, L.S. & Fang, S.X. & Dong, B., 2007. "Modelling and multicriteria analysis of water saving scenarios for an irrigation district in the upper Yellow River Basin," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 93-108, December.
    16. Albaji, Mohammad & Shahnazari, Ali & Behzad, Majid & Naseri, AbdAli & BoroomandNasab, Saeed & Golabi, Mona, 2010. "Comparison of different irrigation methods based on the parametric evaluation approach in Dosalegh plain: Iran," Agricultural Water Management, Elsevier, vol. 97(7), pages 1093-1098, July.
    17. Ørum, Jens Erik & Boesen, Mads Vejlby & Jovanovic, Zorica & Pedersen, Søren Marcus, 2010. "Farmers' incentives to save water with new irrigation systems and water taxation--A case study of Serbian potato production," Agricultural Water Management, Elsevier, vol. 98(3), pages 465-471, December.
    18. Bergez, J. -E. & Garcia, F. & Lapasse, L., 2004. "A hierarchical partitioning method for optimizing irrigation strategies," Agricultural Systems, Elsevier, vol. 80(3), pages 235-253, June.
    19. Payero, J.O. & Tarkalson, D.D. & Irmak, S. & Davison, D. & Petersen, J.L., 2009. "Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass," Agricultural Water Management, Elsevier, vol. 96(10), pages 1387-1397, October.
    20. Knox, J.W. & Kay, M.G. & Weatherhead, E.K., 2012. "Water regulation, crop production, and agricultural water management—Understanding farmer perspectives on irrigation efficiency," Agricultural Water Management, Elsevier, vol. 108(C), pages 3-8.
    21. DeJonge, K.C. & Ascough, J.C. & Andales, A.A. & Hansen, N.C. & Garcia, L.A. & Arabi, M., 2012. "Improving evapotranspiration simulations in the CERES-Maize model under limited irrigation," Agricultural Water Management, Elsevier, vol. 115(C), pages 92-103.
    22. Karam, Fadi & Breidy, Joelle & Stephan, Chafic & Rouphael, Joe, 2003. "Evapotranspiration, yield and water use efficiency of drip irrigated corn in the Bekaa Valley of Lebanon," Agricultural Water Management, Elsevier, vol. 63(2), pages 125-137, December.
    23. Christine Heumesser & Sabine Fuss & Jana Szolgayová & Franziska Strauss & Erwin Schmid, 2012. "Investment in Irrigation Systems under Precipitation Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3113-3137, September.
    24. Bartolini, F. & Bazzani, G.M. & Gallerani, V. & Raggi, M. & Viaggi, D., 2007. "The impact of water and agriculture policy scenarios on irrigated farming systems in Italy: An analysis based on farm level multi-attribute linear programming models," Agricultural Systems, Elsevier, vol. 93(1-3), pages 90-114, March.
    25. Kampas, Athanasios & Petsakos, Athanasios & Rozakis, Stelios, 2012. "Price induced irrigation water saving: Unraveling conflicts and synergies between European agricultural and water policies for a Greek Water District," Agricultural Systems, Elsevier, vol. 113(C), pages 28-38.
    26. Horst, M.G. & Shamutalov, S.S. & Goncalves, J.M. & Pereira, L.S., 2007. "Assessing impacts of surge-flow irrigation on water saving and productivity of cotton," Agricultural Water Management, Elsevier, vol. 87(2), pages 115-127, January.
    27. Groot, Jeroen C.J. & Oomen, Gerard J.M. & Rossing, Walter A.H., 2012. "Multi-objective optimization and design of farming systems," Agricultural Systems, Elsevier, vol. 110(C), pages 63-77.
    28. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    29. Mailhol, Jean Claude & Ruelle, Pierre & Walser, Sabine & Schütze, Niels & Dejean, Cyril, 2011. "Analysis of AET and yield predictions under surface and buried drip irrigation systems using the Crop Model PILOTE and Hydrus-2D," Agricultural Water Management, Elsevier, vol. 98(6), pages 1033-1044, April.
    30. Darouich, Hanaa & Gonçalves, José M. & Muga, André & Pereira, Luis S., 2012. "Water saving vs. farm economics in cotton surface irrigation: An application of multicriteria analysis," Agricultural Water Management, Elsevier, vol. 115(C), pages 223-231.
    31. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Greaves, Geneille E. & Wang, Yu-Min, 2017. "Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment," Agricultural Water Management, Elsevier, vol. 188(C), pages 115-125.
    2. Monjardino, Marta & Harrison, Matthew T. & DeVoil, Peter & Rodriguez, Daniel & Sadras, Victor O., 2022. "Agronomic and on-farm infrastructure adaptations to manage economic risk in Australian irrigated broadacre systems: A case study," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Alonso, A. & Feltz, N. & Gaspart, F. & Sbaa, M. & Vanclooster, M., 2019. "Comparative assessment of irrigation systems’ performance: Case study in the Triffa agricultural district, NE Morocco," Agricultural Water Management, Elsevier, vol. 212(C), pages 338-348.
    4. Dennis Junior Choruma & Oghenekaro Nelson Odume, 2019. "Exploring Farmers’ Management Practices and Values of Ecosystem Services in an Agroecosystem Context—A Case Study from the Eastern Cape, South Africa," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
    5. Z. Popova & M. Ivanova & D. Martins & L. Pereira & K. Doneva & V. Alexandrov & M. Kercheva, 2014. "Vulnerability of Bulgarian agriculture to drought and climate variability with focus on rainfed maize systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 865-886, November.
    6. C. D. Pérez-Blanco & E. E. Koks & E. Calliari & J. Mysiak, 2018. "Economic Impacts of Irrigation-Constrained Agriculture in the Lower Po Basin," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-38, January.
    7. Wang, Yahui & Li, Sien & Qin, Shujing & Guo, Hui & Yang, Danni & Lam, Hon-Ming, 2020. "How can drip irrigation save water and reduce evapotranspiration compared to border irrigation in arid regions in northwest China," Agricultural Water Management, Elsevier, vol. 239(C).
    8. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    9. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    10. Paoletti, J. Mitchell & Shortridge, Julie E., 2020. "Improved representation of uncertainty in farm-level financial cost-benefit analyses of supplemental irrigation in humid regions," Agricultural Water Management, Elsevier, vol. 239(C).
    11. Peake, A.S. & Carberry, P.S. & Raine, S.R. & Gett, V. & Smith, R.J., 2016. "An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia," Agricultural Water Management, Elsevier, vol. 169(C), pages 61-76.
    12. Marilyn S. Painagan & Victor B. Ella, 2022. "Modeling the Impact of Deficit Irrigation on Corn Production," Sustainability, MDPI, vol. 14(16), pages 1-13, August.
    13. Paredes, P. & Rodrigues, G.C. & Alves, I. & Pereira, L.S., 2014. "Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies," Agricultural Water Management, Elsevier, vol. 135(C), pages 27-39.
    14. Kovacs, Kent & Mattia, Mancini & Christopher, Henry & Grant, West, 2015. "Spatial irrigation management to sustain groundwater and economic returns," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196758, Southern Agricultural Economics Association.
    15. Wang, Jingwei & Li, Yuan & Niu, Wenquan, 2021. "Effect of alternating drip irrigation on soil gas emissions, microbial community composition, and root–soil interactions," Agricultural Water Management, Elsevier, vol. 256(C).
    16. Paredes, Paula & Rodrigues, Gonçalo C. & Cameira, Maria do Rosário & Torres, Maria Odete & Pereira, Luis S., 2017. "Assessing yield, water productivity and farm economic returns of malt barley as influenced by the sowing dates and supplemental irrigation," Agricultural Water Management, Elsevier, vol. 179(C), pages 132-143.
    17. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    18. Jing, Bing & Shah, Farooq & Xiao, Enshi & Coulter, Jeffrey A. & Wu, Wei, 2020. "Sprinkler irrigation increases grain yield of sunflower without enhancing the risk of root lodging in a dry semi-humid region," Agricultural Water Management, Elsevier, vol. 239(C).
    19. Mohamadzade, Fahime & Gheysari, Mahdi & Eshghizadeh, Hamidreza & Tabatabaei, Mahsa Sadat & Hoogenboom, Gerrit, 2022. "The effect of water and nitrogen on drip tape irrigated silage maize grown under arid conditions: Experimental and simulations," Agricultural Water Management, Elsevier, vol. 271(C).
    20. Liao, Renkuan & Wu, Wenyong & Hu, Yaqi & Huang, Qiannan & Yan, Hua, 2019. "Quantifying moisture availability in soil profiles of cherry orchards under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 225(C).
    21. Qin Tu & Hong Li & Xinkun Wang & Chao Chen & Yin Luo & Frank Dwomoh, 2014. "Multi-Criteria Evaluation of Small-Scale Sprinkler Irrigation Systems Using Grey Relational Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4665-4684, October.
    22. Michał Napierała & Mariusz Sojka & Joanna Jaskuła, 2023. "Impact of Water Meadow Restoration on Forage Hay Production in Different Hydro-Meteorological Conditions: A Case Study of Racot, Central Poland," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    23. Pérez-Blanco, C.D. & Gutiérrez-Martín, C., 2017. "Buy me a river: Use of multi-attribute non-linear utility functions to address overcompensation in agricultural water buyback," Agricultural Water Management, Elsevier, vol. 190(C), pages 6-20.
    24. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    25. Fang, Qin & Zhang, Xiying & Shao, Liwei & Chen, Suying & Sun, Hongyong, 2018. "Assessing the performance of different irrigation systems on winter wheat under limited water supply," Agricultural Water Management, Elsevier, vol. 196(C), pages 133-143.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paredes, P. & Rodrigues, G.C. & Alves, I. & Pereira, L.S., 2014. "Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies," Agricultural Water Management, Elsevier, vol. 135(C), pages 27-39.
    2. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    3. Darouich, Hanaa & Gonçalves, José M. & Muga, André & Pereira, Luis S., 2012. "Water saving vs. farm economics in cotton surface irrigation: An application of multicriteria analysis," Agricultural Water Management, Elsevier, vol. 115(C), pages 223-231.
    4. Pedras, C.M.G. & Pereira, L.S. & Gonalves, J.M., 2009. "MIRRIG: A decision support system for design and evaluation of microirrigation systems," Agricultural Water Management, Elsevier, vol. 96(4), pages 691-701, April.
    5. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    6. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    7. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Kampas, Athanasios & Petsakos, Athanasios & Rozakis, Stelios, 2012. "Price induced irrigation water saving: Unraveling conflicts and synergies between European agricultural and water policies for a Greek Water District," Agricultural Systems, Elsevier, vol. 113(C), pages 28-38.
    9. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    10. Darouich, Hanaa & Karfoul, Razan & Eid, Haitham & Ramos, Tiago B. & Baddour, Nisreen & Moustafa, Ali & Assaad, Mahmoud I., 2020. "Modeling Zucchini squash irrigation requirements in the Syrian Akkar region using the FAO56 dual-Kc approach," Agricultural Water Management, Elsevier, vol. 229(C).
    11. Speelman, Stijn & Buysse, Jeroen & Farolfi, Stefano & Frija, Aymen & D'Haese, Marijke & D'Haese, Luc, 2009. "Estimating the impacts of water pricing on smallholder irrigators in North West Province, South Africa," Agricultural Water Management, Elsevier, vol. 96(11), pages 1560-1566, November.
    12. Martínez-Romero, A. & Martínez-Navarro, A. & Pardo, J.J. & Montoya, F. & Domínguez, A., 2017. "Real farm management depending on the available volume of irrigation water (part II): Analysis of crop parameters and harvest quality," Agricultural Water Management, Elsevier, vol. 192(C), pages 58-70.
    13. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.
    14. Couto, A. & Ruiz Padín, A. & Reinoso, B., 2013. "Comparative yield and water use efficiency of two maize hybrids differing in maturity under solid set sprinkler and two different lateral spacing drip irrigation systems in León, Spain," Agricultural Water Management, Elsevier, vol. 124(C), pages 77-84.
    15. Greaves, Geneille E. & Wang, Yu-Min, 2017. "Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment," Agricultural Water Management, Elsevier, vol. 188(C), pages 115-125.
    16. Kresović, Branka & Tapanarova, Angelina & Tomić, Zorica & Životić, Ljubomir & Vujović, Dragan & Sredojević, Zorica & Gajić, Boško, 2016. "Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate," Agricultural Water Management, Elsevier, vol. 169(C), pages 34-43.
    17. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    18. Domínguez, A. & Martínez, R.S. & de Juan, J.A. & Martínez-Romero, A. & Tarjuelo, J.M., 2012. "Simulation of maize crop behavior under deficit irrigation using MOPECO model in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 107(C), pages 42-53.
    19. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    20. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:126:y:2013:i:c:p:85-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.