IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v133y2015icp143-157.html
   My bibliography  Save this article

Impact of prospective climate change on water resources and crop yields in the Indrawati basin, Nepal

Author

Listed:
  • Palazzoli, I.
  • Maskey, S.
  • Uhlenbrook, S.
  • Nana, E.
  • Bocchiola, D.

Abstract

The study aimed at developing a tool to investigate the effect of prospective climate change (until 2100) on hydrology and productivity of rain-fed crops (wheat Triticum L., maize Zea Mais L., and rice Oryza L.) in the Indrawati river basin, Nepal, Himalaya.

Suggested Citation

  • Palazzoli, I. & Maskey, S. & Uhlenbrook, S. & Nana, E. & Bocchiola, D., 2015. "Impact of prospective climate change on water resources and crop yields in the Indrawati basin, Nepal," Agricultural Systems, Elsevier, vol. 133(C), pages 143-157.
  • Handle: RePEc:eee:agisys:v:133:y:2015:i:c:p:143-157
    DOI: 10.1016/j.agsy.2014.10.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X14001498
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2014.10.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shreedhar Maskey & Stefan Uhlenbrook & Sunal Ojha, 2011. "An analysis of snow cover changes in the Himalayan region using MODIS snow products and in-situ temperature data," Climatic Change, Springer, vol. 108(1), pages 391-400, September.
    2. Stockle, Claudio O. & Williams, Jimmy R. & Rosenberg, Norman J. & Jones, C. Allan, 1992. "A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I--Modification of the EPIC model for climate change analysis," Agricultural Systems, Elsevier, vol. 38(3), pages 225-238.
    3. Nana, E. & Corbari, C. & Bocchiola, D., 2014. "A model for crop yield and water footprint assessment: Study of maize in the Po valley," Agricultural Systems, Elsevier, vol. 127(C), pages 139-149.
    4. Confalonieri, Roberto & Acutis, Marco & Bellocchi, Gianni & Donatelli, Marcello, 2009. "Multi-metric evaluation of the models WARM, CropSyst, and WOFOST for rice," Ecological Modelling, Elsevier, vol. 220(11), pages 1395-1410.
    5. Bhattarai, M. & Pant, D. & Mishra, V. S. & Devkota, H. & Pun, S. & Kayastha, R. N. & Molden, D., 2002. "Integrated development and management of water resources for productive and equitable use in the Indrawati River Basin, Nepal," IWMI Working Papers H030393, International Water Management Institute.
    6. Supit, I. & van Diepen, C.A. & de Wit, A.J.W. & Kabat, P. & Baruth, B. & Ludwig, F., 2010. "Recent changes in the climatic yield potential of various crops in Europe," Agricultural Systems, Elsevier, vol. 103(9), pages 683-694, November.
    7. Bocchiola, D. & Nana, E. & Soncini, A., 2013. "Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy," Agricultural Water Management, Elsevier, vol. 116(C), pages 50-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soroush Kiani Ghalehsard & Javad Shahraki & Ahmad Akbari & Ali Sardar Shahraki, 2021. "Assessment of the impacts of climate change and variability on water resources and use, food security, and economic welfare in Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14666-14682, October.
    2. Morgese, S. & Casale, F. & Movedi, E. & Confalonieri, R. & Bocchiola, D., 2024. "Modelling the effects of potential climate change on the dynamics of multi-species mountain pastures: A case study in Gran Paradiso National Park, Italy," Agricultural Systems, Elsevier, vol. 217(C).
    3. Bohao Cui & Yili Zhang & Zhaofeng Wang & Changjun Gu & Linshan Liu & Bo Wei & Dianqing Gong & Mohan Kumar Rai, 2022. "Ecological Risk Assessment of Transboundary Region Based on Land-Cover Change: A Case Study of Gandaki River Basin, Himalayas," Land, MDPI, vol. 11(5), pages 1-22, April.
    4. Upendra Bom & John Tiefenbacher & Shashidhar Belbase, 2023. "Individual and community perceptions of climate change in Lower Mustang, Nepal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 5997-6031, July.
    5. Wang, Jianqing & Liu, Xiaoyu & Cheng, Kun & Zhang, Xuhui & Li, Lianqing & Pan, Genxing, 2018. "Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation," Agricultural Water Management, Elsevier, vol. 197(C), pages 100-109.
    6. Samira Shayanmehr & Jana Ivanič Porhajašová & Mária Babošová & Mahmood Sabouhi Sabouni & Hosein Mohammadi & Shida Rastegari Henneberry & Naser Shahnoushi Foroushani, 2022. "The Impacts of Climate Change on Water Resources and Crop Production in an Arid Region," Agriculture, MDPI, vol. 12(7), pages 1-22, July.
    7. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    8. Bocchiola, D. & Brunetti, L. & Soncini, A. & Polinelli, F. & Gianinetto, M., 2019. "Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal," Agricultural Systems, Elsevier, vol. 171(C), pages 113-125.
    9. Saroj Koirala & Yiping Fang & Nirmal Mani Dahal & Chenjia Zhang & Bikram Pandey & Sabita Shrestha, 2020. "Application of Water Poverty Index (WPI) in Spatial Analysis of Water Stress in Koshi River Basin, Nepal," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    10. Tarekegn Dejen Mengistu & Il-Moon Chung & Sun Woo Chang & Bisrat Ayalew Yifru & Min-Gyu Kim & Jeongwoo Lee & Hiyaw Hatiya Ware & Il-Hwan Kim, 2021. "Challenges and Prospects of Advancing Groundwater Research in Ethiopian Aquifers: A Review," Sustainability, MDPI, vol. 13(20), pages 1-15, October.
    11. Mingzhi Yang & Weihua Xiao & Yong Zhao & Xudong Li & Ya Huang & Fan Lu & Baodeng Hou & Baoqi Li, 2018. "Assessment of Potential Climate Change Effects on the Rice Yield and Water Footprint in the Nanliujiang Catchment, China," Sustainability, MDPI, vol. 10(2), pages 1-19, January.
    12. Wang, Ruoyu & Bowling, Laura C. & Cherkauer, Keith A. & Cibin, Raj & Her, Younggu & Chaubey, Indrajeet, 2017. "Biophysical and hydrological effects of future climate change including trends in CO2, in the St. Joseph River watershed, Eastern Corn Belt," Agricultural Water Management, Elsevier, vol. 180(PB), pages 280-296.
    13. Rishikesh Pandey, 2019. "Farmers’ perception on agro-ecological implications of climate change in the Middle-Mountains of Nepal: a case of Lumle Village, Kaski," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(1), pages 221-247, February.
    14. Gohar, Abdelaziz A. & Cashman, Adrian, 2016. "A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare," Agricultural Systems, Elsevier, vol. 147(C), pages 51-64.
    15. Shashidhar Kumar Jha & Ajeet Kumar Negi & Juha Mikael Alatalo & Vignesh Prabhu & Mani Bhushan Jha & Hemant Kumar, 2022. "Forest Degradation Index: A Tool for Forest Vulnerability Assessment in Indian Western Himalaya," Sustainability, MDPI, vol. 14(23), pages 1-29, November.
    16. Prem Sagar Chapagain & Motilal Ghimire & Shova Shrestha, 2019. "Status of natural springs in the Melamchi region of the Nepal Himalayas in the context of climate change," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(1), pages 263-280, February.
    17. Bocchiola, D., 2015. "Impact of potential climate change on crop yield and water footprint of rice in the Po valley of Italy," Agricultural Systems, Elsevier, vol. 139(C), pages 223-237.
    18. Toro-Mujica, Paula & Aguilar, Claudio & Vera, Raúl & Cornejo, Karen, 2016. "A simulation-based approach for evaluating the effects of farm type, management, and rainfall on the water footprint of sheep grazing systems in a semi-arid environment," Agricultural Systems, Elsevier, vol. 148(C), pages 75-85.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bocchiola, D. & Brunetti, L. & Soncini, A. & Polinelli, F. & Gianinetto, M., 2019. "Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal," Agricultural Systems, Elsevier, vol. 171(C), pages 113-125.
    2. Bocchiola, D., 2015. "Impact of potential climate change on crop yield and water footprint of rice in the Po valley of Italy," Agricultural Systems, Elsevier, vol. 139(C), pages 223-237.
    3. Nana, E. & Corbari, C. & Bocchiola, D., 2014. "A model for crop yield and water footprint assessment: Study of maize in the Po valley," Agricultural Systems, Elsevier, vol. 127(C), pages 139-149.
    4. Villani, Lorenzo & Castelli, Giulio & Yimer, Estifanos Addisu & Nkwasa, Albert & Penna, Daniele & van Griensven, Ann & Bresci, Elena, 2024. "Exploring adaptive capacities in Mediterranean agriculture: Insights from Central Italy's Ombrone catchment," Agricultural Systems, Elsevier, vol. 216(C).
    5. Bocchiola, D. & Nana, E. & Soncini, A., 2013. "Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy," Agricultural Water Management, Elsevier, vol. 116(C), pages 50-61.
    6. Cao, Xinchun & Zeng, Wen & Wu, Mengyang & Guo, Xiangping & Wang, Weiguang, 2020. "Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation," Agricultural Water Management, Elsevier, vol. 231(C).
    7. Wang, Jianqing & Liu, Xiaoyu & Cheng, Kun & Zhang, Xuhui & Li, Lianqing & Pan, Genxing, 2018. "Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation," Agricultural Water Management, Elsevier, vol. 197(C), pages 100-109.
    8. Tiecheng Bai & Nannan Zhang & Youqi Chen & Benoit Mercatoris, 2019. "Assessing the Performance of the WOFOST Model in Simulating Jujube Fruit Tree Growth under Different Irrigation Regimes," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
    9. Ahmadi, Mojgan & Etedali, Hadi Ramezani & Elbeltagi, Ahmed, 2021. "Evaluation of the effect of climate change on maize water footprint under RCPs scenarios in Qazvin plain, Iran," Agricultural Water Management, Elsevier, vol. 254(C).
    10. Fei, Li & Meijun, Zhou & Jiaqi, Shao & Zehui, Chen & Xiaoli, Wei & Jiuchun, Yang, 2020. "Maize, wheat and rice production potential changes in China under the background of climate change," Agricultural Systems, Elsevier, vol. 182(C).
    11. Mingzhi Yang & Weihua Xiao & Yong Zhao & Xudong Li & Ya Huang & Fan Lu & Baodeng Hou & Baoqi Li, 2018. "Assessment of Potential Climate Change Effects on the Rice Yield and Water Footprint in the Nanliujiang Catchment, China," Sustainability, MDPI, vol. 10(2), pages 1-19, January.
    12. Namra Ghaffar & Bushra Noreen & Maryam Muhammad Ali & Amna Ali, 2021. "Rice Yield Estimation in Sawat Region Incorporating The Local Physio-Climatic Parameters," International Journal of Agriculture & Sustainable Development, 50sea, vol. 3(2), pages 46-50, June.
    13. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    14. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    15. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
    16. Summer Mabula & Keoikantse Sianga & Ayana Angassa, 2024. "Indigenous Ecological Knowledge and Perceptions of Climate Change on the Environment and Livelihood of Local Communities in Kgalagadi District of Botswana," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 17(4), pages 1-15, July.
    17. Battude, Marjorie & Al Bitar, Ahmad & Brut, Aurore & Tallec, Tiphaine & Huc, Mireille & Cros, Jérôme & Weber, Jean-Jacques & Lhuissier, Ludovic & Simonneaux, Vincent & Demarez, Valérie, 2017. "Modeling water needs and total irrigation depths of maize crop in the south west of France using high spatial and temporal resolution satellite imagery," Agricultural Water Management, Elsevier, vol. 189(C), pages 123-136.
    18. Cabelguenne, M. & Debaeke, P. & Bouniols, A., 1999. "EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybea," Agricultural Systems, Elsevier, vol. 60(3), pages 175-196, June.
    19. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    20. Qiong Jia & Mengfei Li & Xuecheng Dou, 2022. "Climate Change Affects Crop Production Potential in Semi-Arid Regions: A Case Study in Dingxi, Northwest China, in Recent 30 Years," Sustainability, MDPI, vol. 14(6), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:133:y:2015:i:c:p:143-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.