IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v277y2023ics0378377422006643.html
   My bibliography  Save this article

Documenting evapotranspiration and surface energy fluxes over rainfed annual crops within a Mediterranean hilly agrosystem

Author

Listed:
  • Zitouna-Chebbi, Rim
  • Jacob, Frédéric
  • Prévot, Laurent
  • Voltz, Marc

Abstract

The current study aims to document evapotranspiration and associated surface energy fluxes for rainfed annual crops within a Mediterranean hilly agrosystem, in order to provide information on crop water use under such little-studied conditions. For this, an experimental study is conducted within the Tunisian study site of the OMERE observatory (French acronym for the Mediterranean Observatory of Water and the Rural Environment), located in the north-eastern Cap Bon peninsula. It relies on eddy covariance (EC) measurements at the plot scale. We report that (1) observations are consistent with previous studies under Mediterranean or semi-arid contexts, with time series of energy fluxes that depict classical seasonal dynamics, (2) common flux ratios (i.e., Bowen Ratio, ratio of actual to reference evapotranspiration) may change according to upwinds and downwinds, which requires further investigations about possible changes in aerodynamic conditions, and (3) a reference evapotranspiration value of 4 mm day−1 seems to be a threshold beyond which actual evapotranspiration decreases systematically and rapidly. In terms of agricultural water management, the current study suggests to look for early sowing species/varieties, in order to reduce the evaporation-based water loss in autumn. Overall, EC measurements seem promising over rainfed annual crops within semiarid hilly agrosystems, for long term observations, environmental modelling and operational purposes. Since the current study is conducted over few small fields within a specific hilly topography, the original results we report here need to be strengthened with complementary studies.

Suggested Citation

  • Zitouna-Chebbi, Rim & Jacob, Frédéric & Prévot, Laurent & Voltz, Marc, 2023. "Documenting evapotranspiration and surface energy fluxes over rainfed annual crops within a Mediterranean hilly agrosystem," Agricultural Water Management, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:agiwat:v:277:y:2023:i:c:s0378377422006643
    DOI: 10.1016/j.agwat.2022.108117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422006643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.108117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karrou, M. & Oweis, T., 2012. "Water and land productivities of wheat and food legumes with deficit supplemental irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 107(C), pages 94-103.
    2. French, Andrew N. & Hunsaker, Douglas J. & Sanchez, Charles A. & Saber, Mazin & Gonzalez, Juan Roberto & Anderson, Ray, 2020. "Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Siad, Si Mokrane & Iacobellis, Vito & Zdruli, Pandi & Gioia, Andrea & Stavi, Ilan & Hoogenboom, Gerrit, 2019. "A review of coupled hydrologic and crop growth models," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    4. Galleguillos, Mauricio & Jacob, Frédéric & Prévot, Laurent & Faúndez, Carlos & Bsaibes, Aline, 2017. "Estimation of actual evapotranspiration over a rainfed vineyard using a 1-D water transfer model: A case study within a Mediterranean watershed," Agricultural Water Management, Elsevier, vol. 184(C), pages 67-76.
    5. Payero, José O. & Irmak, Suat, 2013. "Daily energy fluxes, evapotranspiration and crop coefficient of soybean," Agricultural Water Management, Elsevier, vol. 129(C), pages 31-43.
    6. Brouziyne, Youssef & Abouabdillah, Aziz & Hirich, Abdelaziz & Bouabid, Rachid & Zaaboul, Rashyd & Benaabidate, Lahcen, 2018. "Modeling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change scenarios," Agricultural Systems, Elsevier, vol. 162(C), pages 154-163.
    7. Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: II. Recommended documentation," Agricultural Water Management, Elsevier, vol. 98(6), pages 921-929, April.
    8. Talebizadeh, Mansour & Moriasi, Daniel & Gowda, Prasanna & Steiner, Jean L. & Tadesse, Haile K. & Nelson, Amanda M. & Starks, Patrick, 2018. "Simultaneous calibration of evapotranspiration and crop yield in agronomic system modeling using the APEX model," Agricultural Water Management, Elsevier, vol. 208(C), pages 299-306.
    9. Anapalli, Saseendran S. & Fisher, Daniel K. & Pinnamaneni, Srinivasa Rao & Reddy, Krishna N., 2020. "Quantifying evapotranspiration and crop coefficients for cotton (Gossypium hirsutum L.) using an eddy covariance approach," Agricultural Water Management, Elsevier, vol. 233(C).
    10. Chenyao Yang & Helder Fraga & Wim Ieperen & Henrique Trindade & João A. Santos, 2019. "Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal," Climatic Change, Springer, vol. 154(1), pages 159-178, May.
    11. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Malik, Anurag & Maroufpoor, Saman, 2020. "Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 241(C).
    12. Grum, Berhane & Assefa, Dereje & Hessel, Rudi & Woldearegay, Kifle & Ritsema, Coen J. & Aregawi, Berihun & Geissen, Violette, 2017. "Improving on-site water availability by combining in-situ water harvesting techniques in semi-arid Northern Ethiopia," Agricultural Water Management, Elsevier, vol. 193(C), pages 153-162.
    13. I. Gaubi & A. Chaabani & A. Ben Mammou & M. H. Hamza, 2017. "A GIS-based soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) (Lebna watershed, Cap Bon, Tunisia)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 219-239, March.
    14. Oussama Zouabi, 2021. "Climate change and climate migration: issues and questions around an in-transition Tunisian economy," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
    15. Dhouib, M. & Zitouna-Chebbi, R. & Prévot, L. & Molénat, J. & Mekki, I. & Jacob, F., 2022. "Multicriteria evaluation of the AquaCrop crop model in a hilly rainfed Mediterranean agrosystem," Agricultural Water Management, Elsevier, vol. 273(C).
    16. Quanqi, Li & Xunbo, Zhou & Yuhai, Chen & Songlie, Yu, 2012. "Water consumption characteristics of winter wheat grown using different planting patterns and deficit irrigation regime," Agricultural Water Management, Elsevier, vol. 105(C), pages 8-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Abou Ali, Asma & Bouchaou, Lhoussaine & Er-Raki, Salah & Hssaissoune, Mohammed & Brouziyne, Youssef & Ezzahar, Jamal & Khabba, Saïd & Chakir, Adnane & Labbaci, Adnane & Chehbouni, Abdelghani, 2023. "Assessment of crop evapotranspiration and deep percolation in a commercial irrigated citrus orchard under semi-arid climate: Combined Eddy-Covariance measurement and soil water balance-based approach," Agricultural Water Management, Elsevier, vol. 275(C).
    3. Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).
    4. Machakaire, A.T.B. & Steyn, J.M. & Franke, A.C., 2021. "Assessing evapotranspiration and crop coefficients of potato in a semi-arid climate using Eddy Covariance techniques," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Villani, Lorenzo & Castelli, Giulio & Yimer, Estifanos Addisu & Nkwasa, Albert & Penna, Daniele & van Griensven, Ann & Bresci, Elena, 2024. "Exploring adaptive capacities in Mediterranean agriculture: Insights from Central Italy's Ombrone catchment," Agricultural Systems, Elsevier, vol. 216(C).
    6. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
    8. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    9. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    11. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    12. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    13. Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
    14. França, Ana Carolina Ferreira & Coelho, Rubens Duarte & da Silva Gundim, Alice & de Oliveira Costa, Jéfferson & Quiloango-Chimarro, Carlos Alberto, 2024. "Effects of different irrigation scheduling methods on physiology, yield, and irrigation water productivity of soybean varieties," Agricultural Water Management, Elsevier, vol. 293(C).
    15. Elfarkh, Jamal & Simonneaux, Vincent & Jarlan, Lionel & Ezzahar, Jamal & Boulet, Gilles & Chakir, Adnane & Er-Raki, Salah, 2022. "Evapotranspiration estimates in a traditional irrigated area in semi-arid Mediterranean. Comparison of four remote sensing-based models," Agricultural Water Management, Elsevier, vol. 270(C).
    16. Wei, Zheng & Paredes, Paula & Liu, Yu & Chi, Wei Wei & Pereira, Luis S., 2015. "Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain," Agricultural Water Management, Elsevier, vol. 147(C), pages 43-53.
    17. Feng, Jiaojiao & Wang, Weizhen & Xu, Feinan & Wang, Shengtang, 2024. "Evaluating the ability of deep learning on actual daily evapotranspiration estimation over the heterogeneous surfaces," Agricultural Water Management, Elsevier, vol. 291(C).
    18. Vergamini, Daniele & Olivieri, Matteo & Andreoli, Maria & Bartolini, Fabio, 2024. "Simulating policy mixes to reduce soil erosion and land abandonment in marginal areas: A case study from the Liguria Region (Italy)," Land Use Policy, Elsevier, vol. 143(C).
    19. Pozníková, Gabriela & Fischer, Milan & van Kesteren, Bram & Orság, Matěj & Hlavinka, Petr & Žalud, Zdeněk & Trnka, Miroslav, 2018. "Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: A comparison of micrometeorological methods," Agricultural Water Management, Elsevier, vol. 209(C), pages 249-263.
    20. Mhawej, Mario & Nasrallah, Ali & Abunnasr, Yaser & Fadel, Ali & Faour, Ghaleb, 2021. "Better irrigation management using the satellite-based adjusted single crop coefficient (aKc) for over sixty crop types in California, USA," Agricultural Water Management, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:277:y:2023:i:c:s0378377422006643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.