IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2020-05-49.html
   My bibliography  Save this article

The Impact of COVID-19 on Price Volatility of Crude Oil and Natural Gas Listed on Multi Commodity Exchange of India

Author

Listed:
  • Bharat Kumar Meher

    (Department of Commerce, D.S. College, Katihar, Under Purnea University, Purnia, Bihar, India,)

  • Iqbal Thonse Hawaldar

    (Department of Accounting and Finance, College of Business Administration, Kingdom University, Sanad, Bahrain,)

  • Latasha Mohapatra

    (Department of Commerce, Manipal Academy of Higher Education, Manipal, Karnataka, India,)

  • Adel M. Sarea

    (College of Business and Finance, Ahlia University, Manama, Bahrain.)

Abstract

The impact of COVID-19, due to the wide-spread demand and supply destruction and downward movement of crude oil prices is of concern for all those connected with the oil and gas industry. In this study, an attempt has been made to estimate the price volatility of crude oil and natural gas listed on multi commodity exchange of India (MCX). We measured the leverage effect of COVID-19 on price volatility of crude oil and natural gas by using the daily prices of crude oil and natural gas from May 01, 2017 to April 30, 2020. The findings of the study reveal that there is a presence of leverage effect of COVID-19 on the price volatility of crude oil. However, this leverage effect is not present on the price volatility of natural gas. The findings of the study will help investors to develop investment strategies and to the policymakers to formulate appropriate policies to overcome or minimise the impact of COVID-19. The forecasting graphs of crude oil prices indicate that there is a possibility that price volatility will be higher in the future. However, it is difficult to forecast the expected price volatility of natural gas for the future because the price volatility graph is extremely fluctuating.

Suggested Citation

  • Bharat Kumar Meher & Iqbal Thonse Hawaldar & Latasha Mohapatra & Adel M. Sarea, 2020. "The Impact of COVID-19 on Price Volatility of Crude Oil and Natural Gas Listed on Multi Commodity Exchange of India," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 422-431.
  • Handle: RePEc:eco:journ2:2020-05-49
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/10047/5303
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/10047/5303
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alcaraz, Carlo & Villalvazo, Sergio, 2017. "The effect of natural gas shortages on the Mexican economy," Energy Economics, Elsevier, vol. 66(C), pages 147-153.
    2. Apergis, Nicholas & Bowden, Nicholas & Payne, James E., 2015. "Downstream integration of natural gas prices across U.S. states: Evidence from deregulation regime shifts," Energy Economics, Elsevier, vol. 49(C), pages 82-92.
    3. Manera, Matteo & Nicolini, Marcella & Vignati, Ilaria, 2013. "Futures Price Volatility in Commodities Markets: The Role of Short Term vs Long Term Speculation," Energy: Resources and Markets 151372, Fondazione Eni Enrico Mattei (FEEM).
    4. Dima Alberg & Haim Shalit & Rami Yosef, 2008. "Estimating stock market volatility using asymmetric GARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 18(15), pages 1201-1208.
    5. CHIA-LIN CHANG & MICHAEL McALEER & ROENGCHAI TANSUCHAT, 2012. "Modelling Long Memory Volatility In Agricultural Commodity Futures Returns," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-27.
    6. Apergis, Nicholas & Loomis, David & Payne, James E., 2010. "Are fluctuations in coal consumption transitory or permanent? Evidence from a panel of US states," Applied Energy, Elsevier, vol. 87(7), pages 2424-2426, July.
    7. Daly, Kevin, 2008. "Financial volatility: Issues and measuring techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2377-2393.
    8. Esmaiel Abounoori & Mohammad Amin Zabol, 2020. "Modeling Gold Volatility: Realized GARCH Approach," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 24(1), pages 299-311, Winter.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Iqbal Thonse Hawaldar & T. M. Rajesha & Lokesha Lokesha & Adel M. Sarea, 2020. "Causal Nexus between the Anamolies in the Crude Oil Price and Stock Market," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 233-238.
    11. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    12. Lutz Kilian, 2008. "Exogenous Oil Supply Shocks: How Big Are They and How Much Do They Matter for the U.S. Economy?," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 216-240, May.
    13. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    14. Harvey, Andrew & Sucarrat, Genaro, 2014. "EGARCH models with fat tails, skewness and leverage," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
    15. Iqbal Thonse Hawaldar & B. Shakila & Prakash Pinto, 2017. "Empirical Testing of Month of the Year Effect on Selected Commercial Banks and Services Sector Companies Listed on Bahrain Bourse," International Journal of Economics and Financial Issues, Econjournals, vol. 7(2), pages 426-436.
    16. Ghulam Ali, 2013. "EGARCH, GJR-GARCH, TGARCH, AVGARCH, NGARCH, IGARCH and APARCH Models for Pathogens at Marine Recreational Sites," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 2(3), pages 1-6.
    17. Narayan, Paresh Kumar & Sharma, Susan & Poon, Wai Ching & Westerlund, Joakim, 2014. "Do oil prices predict economic growth? New global evidence," Energy Economics, Elsevier, vol. 41(C), pages 137-146.
    18. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    19. Hailemariam, Abebe & Smyth, Russell, 2019. "What drives volatility in natural gas prices?," Energy Economics, Elsevier, vol. 80(C), pages 731-742.
    20. Apergis, Nicholas & Loomis, David & Payne, James E., 2010. "Are shocks to natural gas consumption temporary or permanent? Evidence from a panel of U.S. states," Energy Policy, Elsevier, vol. 38(8), pages 4734-4736, August.
    21. Isita Mukherjee & Bhaskar Goswami, 2017. "The volatility of returns from commodity futures: evidence from India," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bharat Kumar Meher & Iqbal Thonse Hawaldar & Santosh Kumar & Abhishek Kumar Gupta, 2022. "Modelling Market Indices, Commodity Market Prices and Stock Prices of Energy Sector using VAR with Variance Decomposition Model," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 122-130, July.
    2. Kumar SANTOSH & Meher Kumar BHARAT & Ramona BIRAU & Mircea Laurentiu SIMION & Anand ABHISHEK & Singh MANOHAR, 2023. "Quantifying Long-Term Volatility for Developed Stock Markets: An Empirical Case Study Using PGARCH Model on Toronto Stock Exchange (TSX)," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 2, pages 61-68.
    3. Assaf, Rima & Gupta, Deeksha & Kumar, Rahul, 2023. "The price of war: Effect of the Russia-Ukraine war on the global financial market," The Journal of Economic Asymmetries, Elsevier, vol. 28(C).
    4. Ricardo Jacob Mendoza-Rivera & Francisco Venegas-Martínez, 2021. "Impacto de la pandemia COVID-19 en los precios de la gasolina y el gas natural en las principales economías de Latinoamérica," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(3), pages 1-22, Julio - S.
    5. Do, Hung Xuan & Nepal, Rabindra & Pham, Son Duy & Jamasb, Tooraj, 2024. "Electricity market crisis in Europe and cross border price effects: A quantile return connectedness analysis," Energy Economics, Elsevier, vol. 135(C).
    6. K. Abhaya Kumar & Prakash Pinto & Iqbal Thonse Hawaldar & Saheem Shaikh & Shravan Bhagav & B. Padmanabha, 2022. "Investigating the Nexus between Crude Oil Price and Stock Prices of Oil Exploration Companies," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 40-47, July.
    7. Daniel Stefan Armeanu & Stefan Cristian Gherghina & Jean Vasile Andrei & Camelia Catalina Joldes, 2023. "Evidence from the nonlinear autoregressive distributed lag model on the asymmetric influence of the first wave of the COVID-19 pandemic on energy markets," Energy & Environment, , vol. 34(5), pages 1433-1470, August.
    8. Suresh Kumar & Ankit Kumar & Gurcharan Singh, 2023. "Causal relationship among international crude oil, gold, exchange rate, and stock market: Fresh evidence from NARDL testing approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 47-57, January.
    9. Shreevastava Aman & Raza Shahil & Bharat Kumar Meher & Ramona Birau & Anand Abhishek & Mircea Laurentiu Simion & Nadia Tudora Cirjan, 2024. "Exploring Advanced GARCH Models for Analyzing Asymmetric Volatility Dynamics for the Emerging Stock Market in Hungary: An Empirical Case Study," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 2, pages 41-52.
    10. Apostolos G. Christopoulos & Petros Kalantonis & Ioannis Katsampoxakis & Konstantinos Vergos, 2021. "COVID-19 and the Energy Price Volatility," Energies, MDPI, vol. 14(20), pages 1-15, October.
    11. Cristi Spulbar & Ramona Birau & Iqbal Thonse Hawaldar & Jatin Trivedi & Anca Ioana Iacob (Troto), 2023. "Measuring Asymmetric Volatility Of Uk, France, And German Stock Markets," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 1, pages 134-146, February.
    12. Elżbieta Szaruga & Zuzanna Kłos-Adamkiewicz & Agnieszka Gozdek & Elżbieta Załoga, 2021. "Linkages between Energy Delivery and Economic Growth from the Point of View of Sustainable Development and Seaports," Energies, MDPI, vol. 14(14), pages 1-61, July.
    13. Bharat Kumar Meher & Iqbal Thonse Hawaldar & Mathew Thomas Gil & Deebom Zorle Dum, 2021. "Measuring Leverage Effect of Covid 19 on Stock Price Volatility of Energy Companies Using High Frequency Data," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 489-502.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bharat Kumar Meher & Iqbal Thonse Hawaldar & Mathew Thomas Gil & Deebom Zorle Dum, 2021. "Measuring Leverage Effect of Covid 19 on Stock Price Volatility of Energy Companies Using High Frequency Data," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 489-502.
    2. Kumar SANTOSH & Meher Kumar BHARAT & Ramona BIRAU & Mircea Laurentiu SIMION & Anand ABHISHEK & Singh MANOHAR, 2023. "Quantifying Long-Term Volatility for Developed Stock Markets: An Empirical Case Study Using PGARCH Model on Toronto Stock Exchange (TSX)," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 2, pages 61-68.
    3. Santosh Kumar & Md. Alamgir & Birau Ramona & Bharat Kumar Meher & Abhishek Anand & Nioata (Chireac) Roxana-Mihaela & Cirjan Nadia Tudora, 2024. "Evaluating The Performance Of Garch Family Models In Estimating Investment Risk And Volatility: A Comparative Analysis Of Sensex And Nifty Index In India," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 3, pages 222-238, June.
    4. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    5. Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data," Energy Economics, Elsevier, vol. 51(C), pages 31-44.
    6. Algieri, Bernardina, 2014. "The influence of biofuels, economic and financial factors on daily returns of commodity futures prices," Energy Policy, Elsevier, vol. 69(C), pages 227-247.
    7. Roy Cerqueti & Massimiliano Giacalone & Raffaele Mattera, 2020. "Skewed non-Gaussian GARCH models for cryptocurrencies volatility modelling," Papers 2004.11674, arXiv.org.
    8. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    9. Hailemariam, Abebe & Smyth, Russell, 2019. "What drives volatility in natural gas prices?," Energy Economics, Elsevier, vol. 80(C), pages 731-742.
    10. Deniz Erer, 2023. "The Impact of News Related Covid-19 on Exchange Rate Volatility:A New Evidence From Generalized Autoregressive Score Model," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(38), pages 105-126, June.
    11. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    12. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
    13. Allen, David E. & Amram, Ron & McAleer, Michael, 2013. "Volatility spillovers from the Chinese stock market to economic neighbours," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 238-257.
    14. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    15. Ñíguez, Trino-Manuel & Perote, Javier, 2017. "Moments expansion densities for quantifying financial risk," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 53-69.
    16. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    17. B M, Lithin & chakraborty, Suman & iyer, Vishwanathan & M N, Nikhil & ledwani, Sanket, 2022. "Modeling asymmetric sovereign bond yield volatility with univariate GARCH models: Evidence from India," MPRA Paper 117067, University Library of Munich, Germany, revised 05 Jan 2023.
    18. Dinghai Xu, 2021. "A study on volatility spurious almost integration effect: A threshold realized GARCH approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4104-4126, July.
    19. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, January.
    20. Kanungo, Rama Prasad, 2021. "Uncertainty of M&As under asymmetric estimation," Journal of Business Research, Elsevier, vol. 122(C), pages 774-793.

    More about this item

    Keywords

    COVID-19; Asymmetric Volatility; Leverage Effect; Crude Oil; Natural Gas; MCX Limited.;
    All these keywords.

    JEL classification:

    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2020-05-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.