Quantifying Long-Term Volatility for Developed Stock Markets: An Empirical Case Study Using PGARCH Model on Toronto Stock Exchange (TSX)
Author
Abstract
Suggested Citation
DOI: 10.35219/eai15840409338
Download full text from publisher
References listed on IDEAS
- Manera, Matteo & Nicolini, Marcella & Vignati, Ilaria, 2013.
"Futures Price Volatility in Commodities Markets: The Role of Short Term vs Long Term Speculation,"
Energy: Resources and Markets
151372, Fondazione Eni Enrico Mattei (FEEM).
- Matteo Manera & Marcella Nicolini, 2013. "Futures Price Volatility in Commodities Markets: The Role of Short Term vs Long Term Speculation," Working Papers 2013.45, Fondazione Eni Enrico Mattei.
- Matteo Manera & Marcella Nicolini & Ilaria Vignati, 2013. "Futures price volatility in commodities markets: The role of short term vs long term speculation," Working Papers 243, University of Milano-Bicocca, Department of Economics, revised May 2013.
- Matteo Manera & Marcella Nicolini & Ilaria Vignati, 2013. "Futures price volatility in commodities markets: The role of short term vs long term speculation," DEM Working Papers Series 042, University of Pavia, Department of Economics and Management.
- Bharat Kumar Meher & Iqbal Thonse Hawaldar & Santosh Kumar & Abhishek Kumar Gupta, 2022. "Modelling Market Indices, Commodity Market Prices and Stock Prices of Energy Sector using VAR with Variance Decomposition Model," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 122-130, July.
- Esmaiel Abounoori & Mohammad Amin Zabol, 2020. "Modeling Gold Volatility: Realized GARCH Approach," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 24(1), pages 299-311, Winter.
- CHIA-LIN CHANG & MICHAEL McALEER & ROENGCHAI TANSUCHAT, 2012.
"Modelling Long Memory Volatility In Agricultural Commodity Futures Returns,"
Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-27.
- Roengchai Tansuchat & Chia-Lin Chang & Michael McAleer, 2009. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," CIRJE F-Series CIRJE-F-680, CIRJE, Faculty of Economics, University of Tokyo.
- Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2012. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," Documentos de Trabajo del ICAE 2012-10, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised May 2012.
- Michael McAleer & Chia-Lin Chang & Roengchai Tansuchat, 2012. "Modelling Long Memory Volatility in Agricultural Commodity Futures Return," KIER Working Papers 817, Kyoto University, Institute of Economic Research.
- Roengchai Tansuchat & Chia-Lin Chang & Michael McAleer, 2009. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," CARF F-Series CARF-F-183, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Chang, C-L. & McAleer, M.J. & Tansuchat, R., 2012. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," Econometric Institute Research Papers EI 2012-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2012. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," Working Papers in Economics 12/09, University of Canterbury, Department of Economics and Finance.
- Tansuchat, R. & Chang, C-L. & McAleer, M.J., 2009. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," Econometric Institute Research Papers EI 2009-35, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Bharat Kumar Meher & Iqbal Thonse Hawaldar & Latasha Mohapatra & Adel M. Sarea, 2020. "The Impact of COVID-19 on Price Volatility of Crude Oil and Natural Gas Listed on Multi Commodity Exchange of India," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 422-431.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Ormos, Mihály & Timotity, Dusan, 2016.
"Unravelling the asymmetric volatility puzzle: A novel explanation of volatility through anchoring,"
Economic Systems, Elsevier, vol. 40(3), pages 345-354.
- Mihaly Ormos & Dusan Timotity, 2016. "Unravelling the Asymmetric Volatility Puzzle: A Novel Explanation of Volatility Through Anchoring," Papers 1606.03597, arXiv.org.
- Marius Matei & Xari Rovira & Núria Agell, 2019. "Bivariate Volatility Modeling with High-Frequency Data," Econometrics, MDPI, vol. 7(3), pages 1-15, September.
- Ghulam Ali, 2013. "EGARCH, GJR-GARCH, TGARCH, AVGARCH, NGARCH, IGARCH and APARCH Models for Pathogens at Marine Recreational Sites," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 2(3), pages 1-6.
- C. Emre Alper & Salih Fendoglu & Burak Saltoglu, 2009. "MIDAS Volatility Forecast Performance Under Market Stress: Evidence from Emerging and Developed Stock Markets," Working Papers 2009/04, Bogazici University, Department of Economics.
- Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
- Thakolsri, Supachok & Sethapramote, Yuthana & Jiranyakul, Komain, 2015. "Asymmetric volatility of the Thai stock market: evidence from high-frequency data," MPRA Paper 67181, University Library of Munich, Germany.
- Isita Mukherjee & Bhaskar Goswami, 2017. "The volatility of returns from commodity futures: evidence from India," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-23, December.
- HaiYue Liu & Aqsa Manzoor & CangYu Wang & Lei Zhang & Zaira Manzoor, 2020. "The COVID-19 Outbreak and Affected Countries Stock Markets Response," IJERPH, MDPI, vol. 17(8), pages 1-19, April.
- Cristi Spulbar & Ramona Birau & Iqbal Thonse Hawaldar & Jatin Trivedi & Anca Ioana Iacob (Troto), 2023. "Measuring Asymmetric Volatility Of Uk, France, And German Stock Markets," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 1, pages 134-146, February.
- Helen Higgs & Andrew C. Worthington, 2005. "Systematic Features of High-Frequency Volatility in Australian Electricity Markets: Intraday Patterns, Information Arrival and Calendar Effects," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 23-42.
- Harvey, Andrew & Sucarrat, Genaro, 2014.
"EGARCH models with fat tails, skewness and leverage,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
- Harvey, A. & Sucarrat, G., 2012. "EGARCH models with fat tails, skewness and leverage," Cambridge Working Papers in Economics 1236, Faculty of Economics, University of Cambridge.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Santosh KUMAR & Bharat Kumar MEHER & Ramona BIRAU & Abhishek ANAND & Mircea Laurentiu SIMION, 2023. "Investigating Volatility Dynamics of the Portugal Stock Market using FIGARCH Models," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 3, pages 39-45.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bharat Kumar Meher & Iqbal Thonse Hawaldar & Mathew Thomas Gil & Deebom Zorle Dum, 2021. "Measuring Leverage Effect of Covid 19 on Stock Price Volatility of Energy Companies Using High Frequency Data," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 489-502.
- Santosh Kumar & Md. Alamgir & Birau Ramona & Bharat Kumar Meher & Abhishek Anand & Nioata (Chireac) Roxana-Mihaela & Cirjan Nadia Tudora, 2024. "Evaluating The Performance Of Garch Family Models In Estimating Investment Risk And Volatility: A Comparative Analysis Of Sensex And Nifty Index In India," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 3, pages 222-238, June.
- Bharat Kumar Meher & Iqbal Thonse Hawaldar & Latasha Mohapatra & Adel M. Sarea, 2020. "The Impact of COVID-19 on Price Volatility of Crude Oil and Natural Gas Listed on Multi Commodity Exchange of India," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 422-431.
- Harvey,Andrew C., 2013.
"Dynamic Models for Volatility and Heavy Tails,"
Cambridge Books,
Cambridge University Press, number 9781107034723, September.
- Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, September.
- Hasanov, Akram Shavkatovich & Poon, Wai Ching & Al-Freedi, Ajab & Heng, Zin Yau, 2018. "Forecasting volatility in the biofuel feedstock markets in the presence of structural breaks: A comparison of alternative distribution functions," Energy Economics, Elsevier, vol. 70(C), pages 307-333.
- Mohamed CHIKHI & Claude DIEBOLT & Tapas MISHRA, 2019.
"Memory that Drives! New Insights into Forecasting Performance of Stock Prices from SEMIFARMA-AEGAS Model,"
Working Papers
07-19, Association Française de Cliométrie (AFC).
- Mohamed Chikhi & Claude Diebolt & Tapas Mishra, 2019. "Memory that Drives! New Insights into Forecasting Performance of Stock Prices from SEMIFARMA-AEGAS Model," Working Papers of BETA 2019-24, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Abdou Kâ Diongue & Dominique Guegan, 2008.
"The k-factor Gegenbauer asymmetric Power GARCH approach for modelling electricity spot price dynamics,"
Post-Print
halshs-00259225, HAL.
- Abdou Kâ Diongue & Dominique Guegan, 2008. "The k-factor Gegenbauer asymmetric Power GARCH approach for modelling electricity spot price dynamics," Documents de travail du Centre d'Economie de la Sorbonne b08013, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Abdou Kâ Diongue & Dominique Guegan, 2008. "The k-factor Gegenbauer asymmetric Power GARCH approach for modelling electricity spot price dynamics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00259225, HAL.
- Per B. Solibakke, 2022. "Step‐ahead spot price densities using daily synchronously reported prices and wind forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 17-42, January.
- Nzeh Innocent Chile & Innocent.U. Duru & Abubakar Yusuf & Bartholomew .O.N. Okafor & Millicent Adanne Eze, 2021. "Modelling the Monetary Impact of Oil Price Volatility in Nigeria: Evidence from GARCH Models," Energy Economics Letters, Asian Economic and Social Society, vol. 8(1), pages 70-94, June.
- Mohamed CHIKHI & Claude DIEBOLT & Tapas MISHRA, 2019. "Does Predictive Ability of an Asset Price Rest in 'Memory'? Insights from a New Approach," Working Papers of BETA 2019-43, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Segnon Mawuli & Lau Chi Keung & Wilfling Bernd & Gupta Rangan, 2022.
"Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(1), pages 73-98, February.
- Mawuli Segnon & Chi Keung Lau & Bernd Wilfling & Rangan Gupta, 2017. "Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data," CQE Working Papers 6117, Center for Quantitative Economics (CQE), University of Muenster.
- Mawuli Segnon & Chi Keung Lau & Bernd Wilfling & Rangan Gupta, 2017. "Are Multifractal Processes Suited to Forecasting Electricity Price Volatility? Evidence from Australian Intraday Data," Working Papers 201739, University of Pretoria, Department of Economics.
- Yacouba Boubacar Maïnassara & Othman Kadmiri & Bruno Saussereau, 2022. "Portmanteau test for the asymmetric power GARCH model when the power is unknown," Statistical Papers, Springer, vol. 63(3), pages 755-793, June.
- Branimir Cvitko Cicvarić, 2020. "Volatility of Cryptocurrencies," Notitia - journal for economic, business and social issues, Notitia Ltd., vol. 1(6), pages 13-23, December.
- Mile Bošnjak, 2018. "Swiss Franc from the Croatian Perspective," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 7(3), pages 41-56.
- Algieri, Bernardina, 2014.
"The influence of biofuels, economic and financial factors on daily returns of commodity futures prices,"
Energy Policy, Elsevier, vol. 69(C), pages 227-247.
- Algieri, Bernardina, 2014. "The influence of biofuels, economic and financial factors on daily returns of commodity futures prices," Discussion Papers 164963, University of Bonn, Center for Development Research (ZEF).
- Dominik Boos, 2024. "Risky times: Seasonality and event risk of commodities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(5), pages 767-783, May.
- Roy Cerqueti & Massimiliano Giacalone & Raffaele Mattera, 2020. "Skewed non-Gaussian GARCH models for cryptocurrencies volatility modelling," Papers 2004.11674, arXiv.org.
- Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
- Owusu Junior, Peterson & Tiwari, Aviral Kumar & Tweneboah, George & Asafo-Adjei, Emmanuel, 2022. "GAS and GARCH based value-at-risk modeling of precious metals," Resources Policy, Elsevier, vol. 75(C).
- Ekong, Christopher N. & Onye, Kenneth U., 2017. "Application of Garch Models to Estimate and Predict Financial Volatility of Daily Stock Returns in Nigeria," MPRA Paper 88309, University Library of Munich, Germany.
More about this item
Keywords
Volatility; Forecasting; PGARCH model; GARCH; Developed stock market;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ddj:fseeai:y:2023:i:2:p:61-68. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gianina Mihai (email available below). General contact details of provider: https://edirc.repec.org/data/fegalro.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.