IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i12p2306-2320.html
   My bibliography  Save this article

A prospective study of bioenergy use in Mexico

Author

Listed:
  • Islas, Jorge
  • Manzini, Fabio
  • Masera, Omar

Abstract

Bioenergy is one of the renewable energy sources that can readily replace fossil fuels, while helping to reduce greenhouse gas emissions and promoting sustainable rural development. This paper analyses the feasibility of future scenarios based on moderate and high use of biofuels in the transportation and electricity generation sectors with the aim of determining their possible impact on the Mexican energy system. Similarly, it evaluates the efficient use of biofuels in the residential sector, particularly in the rural sub-sector. In this context, three scenarios are built within a time frame that goes from 2005 to 2030. In the base scenario, fossil fuels are assumed as the dominant source of energy, whereas in the two alternative scenarios moderate and high biofuel penetration diffusion curves are constructed and discussed on the basis of their technical and economical feasibility. Simulation results indicate that the use of ethanol, biodiesel and electricity obtained from primary biomass may account for 16.17% of the total energy consumed in the high scenario for all selected sectors. CO2 emissions reduction—including the emissions saved from the reduction in the non-sustainable use of fuelwood in the rural residential sector—is equivalent to 87.44 million tons of CO2 and would account for 17.84% of the CO2 emitted by electricity supply and transportation sectors when the base case and the high scenario are compared by 2030.

Suggested Citation

  • Islas, Jorge & Manzini, Fabio & Masera, Omar, 2007. "A prospective study of bioenergy use in Mexico," Energy, Elsevier, vol. 32(12), pages 2306-2320.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:12:p:2306-2320
    DOI: 10.1016/j.energy.2007.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544207001351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2007.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shin, Ho-Chul & Park, Jin-Won & Kim, Ho-Seok & Shin, Eui-Soon, 2005. "Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model," Energy Policy, Elsevier, vol. 33(10), pages 1261-1270, July.
    2. Goldemberg, Jose & Coelho, Suani Teixeira & Lucon, Oswaldo, 2004. "How adequate policies can push renewables," Energy Policy, Elsevier, vol. 32(9), pages 1141-1146, June.
    3. Moreira, Jose R. & Goldemberg, Jose, 1999. "The alcohol program," Energy Policy, Elsevier, vol. 27(4), pages 229-245, April.
    4. Sathaye, Jayant A. & Dixon, Robert K. & Rosenzweig, Cynthia, 1997. "Climate change country studies," Applied Energy, Elsevier, vol. 56(3-4), pages 225-235, March.
    5. Islas, J. & Manzini, F. & Martínez, M., 2003. "Cost-benefit analysis of energy scenarios for the Mexican power sector," Energy, Elsevier, vol. 28(10), pages 979-992.
    6. Corti, Andrea & Lombardi, Lidia, 2004. "Biomass integrated gasification combined cycle with reduced CO2 emissions: Performance analysis and life cycle assessment (LCA)," Energy, Elsevier, vol. 29(12), pages 2109-2124.
    7. Kumar, Amit & Bhattacharya, S.C & Pham, H.L, 2003. "Greenhouse gas mitigation potential of biomass energy technologies in Vietnam using the long range energy alternative planning system model," Energy, Elsevier, vol. 28(7), pages 627-654.
    8. Pradhan, Shreekar & Ale, Bhakta Bahadur & Amatya, Vishwa Bhusan, 2006. "Mitigation potential of greenhouse gas emission and implications on fuel consumption due to clean energy vehicles as public passenger transport in Kathmandu Valley of Nepal: A case study of trolley bu," Energy, Elsevier, vol. 31(12), pages 1748-1760.
    9. Davoudpour, Hamid & Ahadi, Mohammad Sadegh, 2006. "The potential for greenhouse gases mitigation in household sector of Iran: cases of price reform/efficiency improvement and scenario for 2000-2010," Energy Policy, Elsevier, vol. 34(1), pages 40-49, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    2. Subramanyam, Veena & Kumar, Amit & Talaei, Alireza & Mondal, Md. Alam Hossain, 2017. "Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector," Energy, Elsevier, vol. 118(C), pages 795-807.
    3. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    4. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
    5. Lixiao Zhang & Yueyi Feng & Bin Chen, 2011. "Alternative Scenarios for the Development of a Low-Carbon City: A Case Study of Beijing, China," Energies, MDPI, vol. 4(12), pages 1-16, December.
    6. Halkos, George & Tzeremes, Panagiotis, 2015. "Assessing greenhouse gas emissions in Estonia's energy system," MPRA Paper 66105, University Library of Munich, Germany.
    7. Zhang, Qingyu & Weili, Tian & Yumei, Wei & Yingxu, Chen, 2007. "External costs from electricity generation of China up to 2030 in energy and abatement scenarios," Energy Policy, Elsevier, vol. 35(8), pages 4295-4304, August.
    8. Kumar, Subhash & Madlener, Reinhard, 2015. "A Least-Cost Assessment of the CO2 Mitigation Potential Using Renewable Energies in the Indian Electricity Supply Sector," FCN Working Papers 14/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    9. Dagher, Leila & Ruble, Isabella, 2011. "Modeling Lebanon’s electricity sector: Alternative scenarios and their implications," Energy, Elsevier, vol. 36(7), pages 4315-4326.
    10. Tan, Kok Tat & Lee, Keat Teong & Mohamed, Abdul Rahman, 2008. "Role of energy policy in renewable energy accomplishment: The case of second-generation bioethanol," Energy Policy, Elsevier, vol. 36(9), pages 3360-3365, September.
    11. Ahanchian, Mohammad & Biona, Jose Bienvenido Manuel, 2014. "Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila," Energy Policy, Elsevier, vol. 66(C), pages 615-629.
    12. Kumar, Subhash, 2016. "Assessment of renewables for energy security and carbon mitigation in Southeast Asia: The case of Indonesia and Thailand," Applied Energy, Elsevier, vol. 163(C), pages 63-70.
    13. Emodi, Nnaemeka Vincent & Emodi, Chinenye Comfort & Murthy, Girish Panchakshara & Emodi, Adaeze Saratu Augusta, 2017. "Energy policy for low carbon development in Nigeria: A LEAP model application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 247-261.
    14. Vicente Sebastian Espinoza & Veronica Guayanlema & Javier Mart nez-G mez, 2018. "Energy Efficiency Plan Benefits in Ecuador: Long-range Energy Alternative Planning Model," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 52-54.
    15. Niven, Robert K., 2005. "Ethanol in gasoline: environmental impacts and sustainability review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 535-555, December.
    16. Bastin, Cristina & Szklo, Alexandre & Rosa, Luiz Pinguelli, 2010. "Diffusion of new automotive technologies for improving energy efficiency in Brazil's light vehicle fleet," Energy Policy, Elsevier, vol. 38(7), pages 3586-3597, July.
    17. Monteiro de Carvalho, Carolina & Silveira, Semida & Rovere, Emilio Lèbre La & Iwama, Allan Yu, 2015. "Deforested and degraded land available for the expansion of palm oil for biodiesel in the state of Pará in the Brazilian Amazon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 867-876.
    18. Kumar, Subhash & Madlener, Reinhard, 2016. "CO2 emission reduction potential assessment using renewable energy in India," Energy, Elsevier, vol. 97(C), pages 273-282.
    19. Alonso-Pippo, Walfrido & Luengo, Carlos A. & Koehlinger, John & Garzone, Pietro & Cornacchia, Giacinto, 2008. "Sugarcane energy use: The Cuban case," Energy Policy, Elsevier, vol. 36(6), pages 2163-2181, June.
    20. Adom, Philip Kofi & Bekoe, William, 2012. "Conditional dynamic forecast of electrical energy consumption requirements in Ghana by 2020: A comparison of ARDL and PAM," Energy, Elsevier, vol. 44(1), pages 367-380.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:12:p:2306-2320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.