IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v189y2008i3p624-637.html
   My bibliography  Save this article

Modelling and forecasting mortality in Spain

Author

Listed:
  • Debón, A.
  • Montes, F.
  • Puig, F.

Abstract

Experience shows that static life tables overestimate death probabilities. As a consequence of this overestimation the premiums for annuities, pensions and life insurance are not what they actually should be, with negative effects for insurance companies or policy-holders. The reason for this overestimation is that static life tables, through being computed for a specific period of time, cannot take into account the decreasing mortality trend over time. Dynamic life tables overcome this problem by incorporating the influence of the calendar when graduating mortality. Recent papers on the topic look for the development of new methods to deal with this dynamism. Most methods used in dynamic tables are parametric, apply traditional mortality laws and then analyse the evolution of estimated parameters with time series techniques. Our contribution consists in extending and applying Lee-Carter methods to Spanish mortality data, exploring residuals and future trends.

Suggested Citation

  • Debón, A. & Montes, F. & Puig, F., 2008. "Modelling and forecasting mortality in Spain," European Journal of Operational Research, Elsevier, vol. 189(3), pages 624-637, September.
  • Handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:624-637
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)01173-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Ronald & Rofman, Rafael, 1994. "Modelación y proyección de la mortalidad en Chile," Notas de Población, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), June.
    2. Arthur Renshaw & Steven Haberman, 2003. "Lee–Carter mortality forecasting: a parallel generalized linear modelling approach for England and Wales mortality projections," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 119-137, January.
    3. Sithole, Terry Z. & Haberman, Steven & Verrall, Richard J., 2000. "An investigation into parametric models for mortality projections, with applications to immediate annuitants' and life office pensioners' data," Insurance: Mathematics and Economics, Elsevier, vol. 27(3), pages 285-312, December.
    4. Ronald Lee, 2000. "The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(1), pages 80-91.
    5. Pitacco, Ermanno, 2004. "Survival models in a dynamic context: a survey," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 279-298, October.
    6. Lawrence R. Carter & Alexia Prskawetz, 2001. "Examining structural shifts in mortality using the Lee-Carter method," MPIDR Working Papers WP-2001-007, Max Planck Institute for Demographic Research, Rostock, Germany.
    7. Felipe, A. & Guillen, M. & Perez-Marin, A. M., 2002. "Recent Mortality Trends in the Spanish Population," British Actuarial Journal, Cambridge University Press, vol. 8(4), pages 757-786, October.
    8. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    9. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:hum:wpaper:sfb649dp2009-008 is not listed on IDEAS
    2. Han Lin Shang & Steven Haberman, 2020. "Retiree Mortality Forecasting: A Partial Age-Range or a Full Age-Range Model?," Risks, MDPI, vol. 8(3), pages 1-11, July.
    3. Katja Hanewald & Thomas Post & Helmut Gründl, 2011. "Stochastic Mortality, Macroeconomic Risks and Life Insurer Solvency," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(3), pages 458-475, July.
    4. Debón, A. & Martínez-Ruiz, F. & Montes, F., 2010. "A geostatistical approach for dynamic life tables: The effect of mortality on remaining lifetime and annuities," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 327-336, December.
    5. Carfora, M.F. & Cutillo, L. & Orlando, A., 2017. "A quantitative comparison of stochastic mortality models on Italian population data," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 198-214.
    6. Suryo Adi Rakhmawan & M. Hafidz Omar & Muhammad Riaz & Nasir Abbas, 2023. "Hotelling T 2 Control Chart for Detecting Changes in Mortality Models Based on Machine-Learning Decision Tree," Mathematics, MDPI, vol. 11(3), pages 1-14, January.
    7. Post, Thomas & Hanewald, Katja, 2013. "Longevity risk, subjective survival expectations, and individual saving behavior," Journal of Economic Behavior & Organization, Elsevier, vol. 86(C), pages 200-220.
    8. A. Debòn & S. Haberman & F. Montes & E. Otranto, 2012. "Model effect on projected mortality indicators," Working Paper CRENoS 201215, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    9. Hanewald, Katja, 2009. "Lee-Carter and the macroeconomy," SFB 649 Discussion Papers 2009-008, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. repec:hum:wpaper:sfb649dp2009-015 is not listed on IDEAS
    11. David Atance & Alejandro Balbás & Eliseo Navarro, 2020. "Constructing dynamic life tables with a single-factor model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 787-825, December.
    12. David Atance & Ana Debón & Eliseo Navarro, 2020. "A Comparison of Forecasting Mortality Models Using Resampling Methods," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    13. Rachel WINGENBACH & Jong-Min KIM & Hojin JUNG, 2020. "Living Longer in High Longevity Risk," JODE - Journal of Demographic Economics, Cambridge University Press, vol. 86(1), pages 47-86, March.
    14. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    15. Leung, Melvern & Li, Youwei & Pantelous, Athanasios A. & Vigne, Samuel A., 2021. "Bayesian Value-at-Risk backtesting: The case of annuity pricing," European Journal of Operational Research, Elsevier, vol. 293(2), pages 786-801.
    16. de la Fuente, Iván & Navarro, Eliseo & Serna, Gregorio, 2023. "Proposal for calculating regulatory capital requirements for reverse mortgages," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    17. Francisco Morillas & José Valero, 2021. "On a Retarded Nonlocal Ordinary Differential System with Discrete Diffusion Modeling Life Tables," Mathematics, MDPI, vol. 9(3), pages 1-27, January.
    18. Debón, A. & Chaves, L. & Haberman, S. & Villa, F., 2017. "Characterization of between-group inequality of longevity in European Union countries," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 151-165.
    19. Ornelas, Arelly & Guillén, Montserrat, 2013. "A Comparison between General Population Mortality and Life Tables for Insurance in Mexico under Gender Proportion Inequality || Una comparación entre la mortalidad de la población general y las tablas," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 16(1), pages 47-67, December.
    20. Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    21. Gisou Díaz-Rojo & Ana Debón & Jaime Mosquera, 2020. "Multivariate Control Chart and Lee–Carter Models to Study Mortality Changes," Mathematics, MDPI, vol. 8(11), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pitacco, Ermanno, 2004. "Survival models in a dynamic context: a survey," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 279-298, October.
    2. Debon, A. & Montes, F. & Mateu, J. & Porcu, E. & Bevilacqua, M., 2008. "Modelling residuals dependence in dynamic life tables: A geostatistical approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3128-3147, February.
    3. Han Lin Shang & Rob J Hyndman & Heather Booth, 2010. "A comparison of ten principal component methods for forecasting mortality rates," Monash Econometrics and Business Statistics Working Papers 8/10, Monash University, Department of Econometrics and Business Statistics.
    4. Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.
    5. Michel Denuit, 2009. "Life Anuities with Stochastic Survival Probabilities: A Review," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 463-489, September.
    6. Hatzopoulos, P. & Haberman, S., 2009. "A parameterized approach to modeling and forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 103-123, February.
    7. Han Lin Shang & Heather Booth & Rob Hyndman, 2011. "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.
    8. Czado, Claudia & Delwarde, Antoine & Denuit, Michel, 2005. "Bayesian Poisson log-bilinear mortality projections," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 260-284, June.
    9. Jorge Miguel Ventura Bravo, 2011. "Pricing Longevity Bonds Using Affine-Jump Diffusion Models," CEFAGE-UE Working Papers 2011_29, University of Evora, CEFAGE-UE (Portugal).
    10. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    11. Hatzopoulos, P. & Haberman, S., 2011. "A dynamic parameterization modeling for the age-period-cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 155-174, September.
    12. Haberman, Steven & Renshaw, Arthur, 2011. "A comparative study of parametric mortality projection models," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 35-55, January.
    13. Dorina Lazar & Michel M. Denuit, 2009. "A multivariate time series approach to projected life tables," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 806-823, November.
    14. Hainaut, Donatien, 2012. "Multidimensional Lee–Carter model with switching mortality processes," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 236-246.
    15. Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310.
    16. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    17. Lee, Yung-Tsung & Wang, Chou-Wen & Huang, Hong-Chih, 2012. "On the valuation of reverse mortgages with regular tenure payments," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 430-441.
    18. Ekheden, Erland & Hössjer, Ola, 2015. "Multivariate time series modeling, estimation and prediction of mortalities," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 156-171.
    19. Laurent Callot & Niels Haldrup & Malene Kallestrup-Lamb, 2016. "Deterministic and stochastic trends in the Lee–Carter mortality model," Applied Economics Letters, Taylor & Francis Journals, vol. 23(7), pages 486-493, May.
    20. Shen, Yang & Siu, Tak Kuen, 2013. "Longevity bond pricing under stochastic interest rate and mortality with regime-switching," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 114-123.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:624-637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.