IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v25y2011i1.html
   My bibliography  Save this article

The future of death in America

Author

Listed:
  • Samir Soneji

    (Dartmouth College)

  • Gary King

    (Harvard University)

Abstract

Population mortality forecasts are widely used for allocating public health expenditures, setting research priorities, and evaluating the viability of public pensions, private pensions, and health care financing systems. Although we know a great deal about patterns in and causes of mortality, most forecasts are still based on simple linear extrapolations that ignore covariates and other prior information. We adapt a Bayesian hierarchical forecasting model capable of including more known health and demographic information than has previously been possible. This leads to the first age- and sex-specific forecasts of American mortality that simultaneously incorporate, in a formal statistical model, the effects of the recent rapid increase in obesity, the steady decline in tobacco consumption, and the well known patterns of smooth mortality age profiles and time trends. Formally including new information in forecasts can matter a great deal. For example, we estimate an increase in male life expectancy at birth from 76.2 years in 2010 to 79.9 years in 2030, which is 1.8 years greater than the U.S. Social Security Administration projection and 1.5 years more than U.S. Census projection. For females, we estimate more modest gains in life expectancy at birth over the next twenty years from 80.5 years to 81.9 years, which is virtually identical to the Social Security Administration projection and 2.0 years less than U.S. Census projections. We show that these patterns are also likely to greatly affect the aging American population structure. We offer an easy-to-use approach so that researchers can include other sources of information and potentially improve on our forecasts too.

Suggested Citation

  • Samir Soneji & Gary King, 2011. "The future of death in America," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(1), pages 1-38.
  • Handle: RePEc:dem:demres:v:25:y:2011:i:1
    DOI: 10.4054/DemRes.2011.25.1
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol25/1/25-1.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2011.25.1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard G. Rogers & Robert A. Hummer & Patrick M. Krueger & Fred C. Pampel, 2005. "Mortality Attributable to Cigarette Smoking in the United States," Population and Development Review, The Population Council, Inc., vol. 31(2), pages 259-292, June.
    2. Samuel Preston & Haidong Wang, 2006. "Sex mortality differences in The United States: The role of cohort smoking patterns," Demography, Springer;Population Association of America (PAA), vol. 43(4), pages 631-646, November.
    3. King, Gary & Zeng, Langche, 2001. "Explaining Rare Events in International Relations," International Organization, Cambridge University Press, vol. 55(3), pages 693-715, July.
    4. Ho, Daniel E. & Imai, Kosuke & King, Gary & Stuart, Elizabeth A., 2007. "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis, Cambridge University Press, vol. 15(3), pages 199-236, July.
    5. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    6. Neil Mehta & Virginia Chang, 2009. "Mortality attributable to obesity among middle-aged adults in the united states," Demography, Springer;Population Association of America (PAA), vol. 46(4), pages 851-872, November.
    7. Frank A. Sloan & Jan Ostermann & Christopher Conover & Donald H. Taylor, Jr. & Gabriel Picone, 2006. "The Price of Smoking," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262693453, April.
    8. Ronald Lee & Timothy Miller, 2001. "Evaluating the performance of the lee-carter method for forecasting mortality," Demography, Springer;Population Association of America (PAA), vol. 38(4), pages 537-549, November.
    9. Samir Soneji & Gary King, 2012. "Statistical Security for Social Security," Demography, Springer;Population Association of America (PAA), vol. 49(3), pages 1037-1060, August.
    10. Ronald Lee & Shripad Tuljapurkar, 1997. "Death and Taxes: Longer life, consumption, and social security," Demography, Springer;Population Association of America (PAA), vol. 34(1), pages 67-81, February.
    11. John R. Wilmoth, 2005. "On the relationship between period and cohort mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 13(11), pages 231-280.
    12. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    13. King, Gary & Zeng, Langche, 2006. "The Dangers of Extreme Counterfactuals," Political Analysis, Cambridge University Press, vol. 14(2), pages 131-159, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. O'Connell, Alison, 2014. "Longevity Trends and their Implications for the Age of Eligibility for New Zealand Superannuation," Working Paper Series 18814, Victoria University of Wellington, Chair in Public Finance.
    2. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    3. Patrizio Vanella & Ugofilippo Basellini & Berit Lange, 2020. "Assessing Excess Mortality in Times of Pandemics Based on Principal Component Analysis of Weekly Mortality Data -- The Case of COVID-19," Working Papers axbhmxrs-o0viyh9z07m, French Institute for Demographic Studies.
    4. David McCarthy, 2021. "80 will be the new 70: Old‐age mortality postponement in the United States and its likely effect on the finances of the OASI program," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 381-412, June.
    5. Adrian E. Raftery & Nevena Lalic & Patrick Gerland, 2014. "Joint probabilistic projection of female and male life expectancy," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(27), pages 795-822.
    6. Monica Alexander & Emilio Zagheni & Magali Barbieri, 2017. "A Flexible Bayesian Model for Estimating Subnational Mortality," Demography, Springer;Population Association of America (PAA), vol. 54(6), pages 2025-2041, December.
    7. Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
    8. Jorge M. Uribe & Helena Chuliá & Montserrat Guillen, 2018. "Trends in the Quantiles of the Life Table Survivorship Function," European Journal of Population, Springer;European Association for Population Studies, vol. 34(5), pages 793-817, December.
    9. Carl Schmertmann & Emilio Zagheni & Joshua R. Goldstein & Mikko Myrskylä, 2014. "Bayesian Forecasting of Cohort Fertility," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 500-513, June.
    10. Lenny Stoeldraijer & Coen van Duin & Leo van Wissen & Fanny Janssen, 2013. "Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(13), pages 323-354.
    11. Samir Soneji & Gary King, 2012. "Statistical Security for Social Security," Demography, Springer;Population Association of America (PAA), vol. 49(3), pages 1037-1060, August.
    12. O'Connell, Alison, 2014. "Longevity Trends and their Implications for the Age of Eligibility for New Zealand Superannuation," Working Paper Series 3168, Victoria University of Wellington, Chair in Public Finance.
    13. F. Peters & J. P. Mackenbach & W. J. Nusselder, 2016. "Does the Impact of the Tobacco Epidemic Explain Structural Changes in the Decline of Mortality?," European Journal of Population, Springer;European Association for Population Studies, vol. 32(5), pages 687-702, December.
    14. Samuel Preston & Andrew Stokes & Neil Mehta & Bochen Cao, 2014. "Projecting the Effect of Changes in Smoking and Obesity on Future Life Expectancy in the United States," Demography, Springer;Population Association of America (PAA), vol. 51(1), pages 27-49, February.
    15. Nan Li & Ronald Lee & Patrick Gerland, 2013. "Extending the Lee-Carter Method to Model the Rotation of Age Patterns of Mortality Decline for Long-Term Projections," Demography, Springer;Population Association of America (PAA), vol. 50(6), pages 2037-2051, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samir Soneji & Gary King, 2012. "Statistical Security for Social Security," Demography, Springer;Population Association of America (PAA), vol. 49(3), pages 1037-1060, August.
    2. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    3. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    4. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    5. Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
    6. Tobias C. Vogt & Alyson A. van Raalte & Pavel Grigoriev & Mikko Myrskylä, 2016. "German East-West mortality difference: two cross-overs driven by smoking," MPIDR Working Papers WP-2016-004, Max Planck Institute for Demographic Research, Rostock, Germany.
    7. Chen, Hua & MacMinn, Richard & Sun, Tao, 2015. "Multi-population mortality models: A factor copula approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 135-146.
    8. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    9. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    10. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    11. Jessica Ho & Irma Elo, 2013. "The Contribution of Smoking to Black-White Differences in U.S. Mortality," Demography, Springer;Population Association of America (PAA), vol. 50(2), pages 545-568, April.
    12. Jens Robben & Katrien Antonio & Sander Devriendt, 2022. "Assessing the Impact of the COVID-19 Shock on a Stochastic Multi-Population Mortality Model," Risks, MDPI, vol. 10(2), pages 1-33, January.
    13. Ayuso, Mercedes & Bravo, Jorge M. & Holzmann, Robert, 2021. "Getting life expectancy estimates right for pension policy: period versus cohort approach," Journal of Pension Economics and Finance, Cambridge University Press, vol. 20(2), pages 212-231, April.
    14. Benjamin Seligman & Gabi Greenberg & Shripad Tuljapurkar, 2016. "Convergence in male and female life expectancy: Direction, age pattern, and causes," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 34(38), pages 1063-1074.
    15. Rui Zhou & Johnny Siu-Hang Li & Ken Seng Tan, 2013. "Pricing Standardized Mortality Securitizations: A Two-Population Model With Transitory Jump Effects," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 733-774, September.
    16. Yanlin Shi & Sixian Tang & Jackie Li, 2020. "A Two-Population Extension of the Exponential Smoothing State Space Model with a Smoothing Penalisation Scheme," Risks, MDPI, vol. 8(3), pages 1-18, June.
    17. Søren Kjærgaard & Yunus Emre Ergemen & Marie-Pier Bergeron Boucher & Jim Oeppen & Malene Kallestrup-Lamb, 2019. "Longevity forecasting by socio-economic groups using compositional data analysis," CREATES Research Papers 2019-08, Department of Economics and Business Economics, Aarhus University.
    18. Börger, Matthias & Schupp, Johannes, 2018. "Modeling trend processes in parametric mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 369-380.
    19. Carlo Maccheroni & Samuel Nocito, 2017. "Backtesting the Lee–Carter and the Cairns–Blake–Dowd Stochastic Mortality Models on Italian Death Rates," Risks, MDPI, vol. 5(3), pages 1-23, July.
    20. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.

    More about this item

    Keywords

    mortality; forecasting; smoking; obesity; age dependency;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:25:y:2011:i:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.