IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v68y2019i5p1351-1370.html
   My bibliography  Save this article

Forecasting causes of death by using compositional data analysis: the case of cancer deaths

Author

Listed:
  • Søren Kjærgaard
  • Yunus Emre Ergemen
  • Malene Kallestrup‐Lamb
  • Jim Oeppen
  • Rune Lindahl‐Jacobsen

Abstract

Cause‐specific mortality forecasting is often based on predicting cause‐specific death rates independently. Only a few methods have been suggested that incorporate dependence between causes. An attractive alternative is to model and forecast cause‐specific death distributions, rather than mortality rates, as dependence between the causes can be incorporated directly. We follow this idea and propose two new models which extend the current research on mortality forecasting using death distributions. We find that adding age, time and cause‐specific weights and decomposing both joint and individual variation between different causes of death increased the forecast accuracy of cancer deaths by using data for French and Dutch populations.

Suggested Citation

  • Søren Kjærgaard & Yunus Emre Ergemen & Malene Kallestrup‐Lamb & Jim Oeppen & Rune Lindahl‐Jacobsen, 2019. "Forecasting causes of death by using compositional data analysis: the case of cancer deaths," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(5), pages 1351-1370, November.
  • Handle: RePEc:bla:jorssc:v:68:y:2019:i:5:p:1351-1370
    DOI: 10.1111/rssc.12357
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12357
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    2. Søren Kjærgaard & Yunus Emre Ergemen & Marie-Pier Bergeron Boucher & Jim Oeppen & Malene Kallestrup-Lamb, 2019. "Longevity forecasting by socio-economic groups using compositional data analysis," CREATES Research Papers 2019-08, Department of Economics and Business Economics, Aarhus University.
    3. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    4. Rizzi, Silvia & Kjærgaard, Søren & Bergeron Boucher, Marie-Pier & Camarda, Carlo Giovanni & Lindahl-Jacobsen, Rune & Vaupel, James W., 2021. "Killing off cohorts: Forecasting mortality of non-extinct cohorts with the penalized composite link model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 95-104.
    5. S⊘ren Kjærgaard & Yunus Emre Ergemen & Marie‐Pier Bergeron‐Boucher & Jim Oeppen & Malene Kallestrup‐Lamb, 2020. "Longevity forecasting by socio‐economic groups using compositional data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1167-1187, June.
    6. Graziani, Rebecca & NIGRI, ANDREA, 2023. "An Age–Period–Cohort Model in a Dirichlet Framework: A Coherent Causes of Death Estimation," SocArXiv 856yw, Center for Open Science.
    7. Bergeron-Boucher, Marie-Pier & Kjærgaard, Søren, 2022. "Mortality forecasts by age and cause of death: How to forecast both dimensions?," SocArXiv d7hbp, Center for Open Science.
    8. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    9. Marco Stefanucci & Stefano Mazzuco, 2022. "Analysing cause‐specific mortality trends using compositional functional data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 61-83, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:68:y:2019:i:5:p:1351-1370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.