IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v27y2011i02p312-343_00.html
   My bibliography  Save this article

Testing For White Noise Under Unknown Dependence And Its Applications To Diagnostic Checking For Time Series Models

Author

Listed:
  • Shao, Xiaofeng

Abstract

Testing for white noise has been well studied in the literature of econometrics and statistics. For most of the proposed test statistics, such as the well-known Box–Pierce test statistic with fixed lag truncation number, the asymptotic null distributions are obtained under independent and identically distributed assumptions and may not be valid for dependent white noise. Because of recent popularity of conditional heteroskedastic models (e.g., generalized autoregressive conditional heteroskedastic [GARCH] models), which imply nonlinear dependence with zero autocorrelation, there is a need to understand the asymptotic properties of the existing test statistics under unknown dependence. In this paper, we show that the asymptotic null distribution of the Box–Pierce test statistic with general weights still holds under unknown weak dependence as long as the lag truncation number grows at an appropriate rate with increasing sample size. Further applications to diagnostic checking of the autoregressive moving average (ARMA) and fractional autoregressive integrated moving average (FARIMA) models with dependent white noise errors are also addressed. Our results go beyond earlier ones by allowing non-Gaussian and conditional heteroskedastic errors in the ARMA and FARIMA models and provide theoretical support for some empirical findings reported in the literature.

Suggested Citation

  • Shao, Xiaofeng, 2011. "Testing For White Noise Under Unknown Dependence And Its Applications To Diagnostic Checking For Time Series Models," Econometric Theory, Cambridge University Press, vol. 27(2), pages 312-343, April.
  • Handle: RePEc:cup:etheor:v:27:y:2011:i:02:p:312-343_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466610000253/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengya Liu & Fukan Zhu & Ke Zhu, 2020. "Multi-frequency-band tests for white noise under heteroskedasticity," Papers 2004.09161, arXiv.org.
    2. Characiejus, Vaidotas & Rice, Gregory, 2020. "A general white noise test based on kernel lag-window estimates of the spectral density operator," Econometrics and Statistics, Elsevier, vol. 13(C), pages 175-196.
    3. Ke Zhu, 2016. "Bootstrapping the portmanteau tests in weak auto-regressive moving average models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 463-485, March.
    4. Giraitis, Liudas & Li, Yufei & Phillips, Peter C.B., 2024. "Robust inference on correlation under general heterogeneity," Journal of Econometrics, Elsevier, vol. 240(1).
    5. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    6. Li, Linyuan & Yao, Shan & Duchesne, Pierre, 2014. "On wavelet-based testing for serial correlation of unknown form using Fan’s adaptive Neyman method," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 308-327.
    7. Xuexin Wang & Yixiao Sun, 2020. "An Asymptotic F Test for Uncorrelatedness in the Presence of Time Series Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 536-550, July.
    8. Colin M. Gallagher & Thomas J. Fisher, 2015. "On Weighted Portmanteau Tests For Time-Series Goodness-Of-Fit," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(1), pages 67-83, January.
    9. Zhu, Ke & Li, Wai Keung, 2015. "A bootstrapped spectral test for adequacy in weak ARMA models," Journal of Econometrics, Elsevier, vol. 187(1), pages 113-130.
    10. Zhu, Ke, 2012. "A mixed portmanteau test for ARMA-GARCH model by the quasi-maximum exponential likelihood estimation approach," MPRA Paper 40382, University Library of Munich, Germany.
    11. Xiao, Han & Wu, Wei Biao, 2019. "Portmanteau Test and Simultaneous Inference for Serial Covariances," IRTG 1792 Discussion Papers 2019-017, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    12. Yacouba Boubacar Maïnassara & Youssef Esstafa & Bruno Saussereau, 2021. "Estimating FARIMA models with uncorrelated but non-independent error terms," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 549-608, October.
    13. Chang, Jinyuan & Jiang, Qing & Shao, Xiaofeng, 2023. "Testing the martingale difference hypothesis in high dimension," Journal of Econometrics, Elsevier, vol. 235(2), pages 972-1000.
    14. Guay, Alain & Guerre, Emmanuel & Lazarová, Štěpána, 2013. "Robust adaptive rate-optimal testing for the white noise hypothesis," Journal of Econometrics, Elsevier, vol. 176(2), pages 134-145.
    15. Chang, Jinyuan & Yao, Qiwei & Zhou, Wen, 2017. "Testing for high-dimensional white noise using maximum cross-correlations," LSE Research Online Documents on Economics 68531, London School of Economics and Political Science, LSE Library.
    16. Chen, Min & Zhu, Ke, 2014. "Sign-based specification tests for martingale difference with conditional heteroscedasity," MPRA Paper 56347, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:27:y:2011:i:02:p:312-343_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.