IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v13y2020icp175-196.html
   My bibliography  Save this article

A general white noise test based on kernel lag-window estimates of the spectral density operator

Author

Listed:
  • Characiejus, Vaidotas
  • Rice, Gregory

Abstract

A general white noise test for functional time series is considered. The idea of the test is to estimate a distance between the spectral density operator of a weakly stationary time series and the constant spectral density operator of an uncorrelated time series. The estimator of the distance is based on a kernel lag-window type estimator of the spectral density operator. When the observed time series is a strong white noise in a real separable Hilbert space, it is shown that the asymptotic distribution of the test statistic is standard normal, and it is further shown that the test statistic diverges for general serially correlated time series. These results recover as special cases some previous tests. In order to implement the test, a number of kernel and bandwidth choices is proposed and studied, including a new data adaptive bandwidth, as well as data adaptive power transformations of the test statistic that improve the normal approximation in finite samples. A simulation study demonstrated that the proposed method has good size and improved power when compared to other methods available in the literature, while also offering a light computational burden.

Suggested Citation

  • Characiejus, Vaidotas & Rice, Gregory, 2020. "A general white noise test based on kernel lag-window estimates of the spectral density operator," Econometrics and Statistics, Elsevier, vol. 13(C), pages 175-196.
  • Handle: RePEc:eee:ecosta:v:13:y:2020:i:c:p:175-196
    DOI: 10.1016/j.ecosta.2019.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306219300073
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2019.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
    2. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    3. Alexander Aue & Lajos Horváth & Daniel F. Pellatt, 2017. "Functional Generalized Autoregressive Conditional Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 3-21, January.
    4. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    5. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    6. Pramita Bagchi & Vaidotas Characiejus & Holger Dette, 2018. "A Simple Test for White Noise in Functional Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(1), pages 54-74, January.
    7. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    8. Escanciano, J. Carlos & Lobato, Ignacio N., 2009. "An automatic Portmanteau test for serial correlation," Journal of Econometrics, Elsevier, vol. 151(2), pages 140-149, August.
    9. Shao, Xiaofeng, 2011. "A bootstrap-assisted spectral test of white noise under unknown dependence," Journal of Econometrics, Elsevier, vol. 162(2), pages 213-224, June.
    10. Gabrys, Robertas & Kokoszka, Piotr, 2007. "Portmanteau Test of Independence for Functional Observations," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1338-1348, December.
    11. Shao, Xiaofeng, 2011. "Testing For White Noise Under Unknown Dependence And Its Applications To Diagnostic Checking For Time Series Models," Econometric Theory, Cambridge University Press, vol. 27(2), pages 312-343, April.
    12. Hong, Yongmiao, 1996. "Consistent Testing for Serial Correlation of Unknown Form," Econometrica, Econometric Society, vol. 64(4), pages 837-864, July.
    13. Willa W. Chen & Rohit S. Deo, 2004. "Power transformations to induce normality and their applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 117-130, February.
    14. Berkes, István & Horváth, Lajos & Rice, Gregory, 2016. "On the asymptotic normality of kernel estimators of the long run covariance of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 150-175.
    15. Klepsch, J. & Klüppelberg, C., 2017. "An innovations algorithm for the prediction of functional linear processes," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 252-271.
    16. Gregory Rice & Han Lin Shang, 2017. "A Plug-in Bandwidth Selection Procedure for Long-Run Covariance Estimation with Stationary Functional Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 591-609, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mestre, Guillermo & Portela, José & Rice, Gregory & Muñoz San Roque, Antonio & Alonso, Estrella, 2021. "Functional time series model identification and diagnosis by means of auto- and partial autocorrelation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    2. Rademacher, Daniel & Kreiß, Jens-Peter & Paparoditis, Efstathios, 2024. "Asymptotic normality of spectral means of Hilbert space valued random processes," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    3. Axel Bücher & Holger Dette & Florian Heinrichs, 2023. "A portmanteau-type test for detecting serial correlation in locally stationary functional time series," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 255-278, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    2. Gregory Rice & Han Lin Shang, 2017. "A Plug-in Bandwidth Selection Procedure for Long-Run Covariance Estimation with Stationary Functional Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 591-609, July.
    3. Horváth, Lajos & Liu, Zhenya & Rice, Gregory & Wang, Shixuan, 2020. "A functional time series analysis of forward curves derived from commodity futures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 646-665.
    4. Guay, Alain & Guerre, Emmanuel & Lazarová, Štěpána, 2013. "Robust adaptive rate-optimal testing for the white noise hypothesis," Journal of Econometrics, Elsevier, vol. 176(2), pages 134-145.
    5. Hill, Jonathan B. & Motegi, Kaiji, 2019. "Testing the white noise hypothesis of stock returns," Economic Modelling, Elsevier, vol. 76(C), pages 231-242.
    6. Axel Bücher & Holger Dette & Florian Heinrichs, 2023. "A portmanteau-type test for detecting serial correlation in locally stationary functional time series," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 255-278, July.
    7. Ke Zhu, 2016. "Bootstrapping the portmanteau tests in weak auto-regressive moving average models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 463-485, March.
    8. Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2021. "Exploring volatility of crude oil intra-day return curves: a functional GARCH-X Model," MPRA Paper 109231, University Library of Munich, Germany.
    9. Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2019. "Tests for conditional heteroscedasticity with functional data and goodness-of-fit tests for FGARCH models," MPRA Paper 93048, University Library of Munich, Germany.
    10. Mengya Liu & Fukan Zhu & Ke Zhu, 2020. "Multi-frequency-band tests for white noise under heteroskedasticity," Papers 2004.09161, arXiv.org.
    11. Mestre, Guillermo & Portela, José & Rice, Gregory & Muñoz San Roque, Antonio & Alonso, Estrella, 2021. "Functional time series model identification and diagnosis by means of auto- and partial autocorrelation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    12. Zhu, Ke & Li, Wai Keung, 2015. "A bootstrapped spectral test for adequacy in weak ARMA models," Journal of Econometrics, Elsevier, vol. 187(1), pages 113-130.
    13. Gregory Rice & Tony Wirjanto & Yuqian Zhao, 2020. "Tests for conditional heteroscedasticity of functional data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 733-758, November.
    14. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    15. Cerovecki, Clément & Francq, Christian & Hörmann, Siegfried & Zakoïan, Jean-Michel, 2019. "Functional GARCH models: The quasi-likelihood approach and its applications," Journal of Econometrics, Elsevier, vol. 209(2), pages 353-375.
    16. Chang, Jinyuan & Jiang, Qing & Shao, Xiaofeng, 2023. "Testing the martingale difference hypothesis in high dimension," Journal of Econometrics, Elsevier, vol. 235(2), pages 972-1000.
    17. Li, Muyi & Zhang, Yanfen, 2022. "Bootstrapping multivariate portmanteau tests for vector autoregressive models with weak assumptions on errors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    18. Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022. "Seasonal functional autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.
    19. Shang Han Lin, 2020. "A Comparison of Hurst Exponent Estimators in Long-range Dependent Curve Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-39, January.
    20. Li, Linyuan & Duchesne, Pierre & Liou, Chu Pheuil, 2021. "On diagnostic checking in ARMA models with conditionally heteroscedastic martingale difference using wavelet methods," Econometrics and Statistics, Elsevier, vol. 19(C), pages 169-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:13:y:2020:i:c:p:175-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.