IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/40382.html
   My bibliography  Save this paper

A mixed portmanteau test for ARMA-GARCH model by the quasi-maximum exponential likelihood estimation approach

Author

Listed:
  • Zhu, Ke

Abstract

This paper investigates the joint limiting distribution of the residual autocorrelation functions and the absolute residual autocorrelation functions of ARMA-GARCH model. This leads a mixed portmanteau test for diagnostic checking of the ARMA-GARCH model fitted by using the quasi-maximum exponential likelihood estimation approach in Zhu and Ling (2011). Simulation studies are carried out to examine our asymptotic theory, and assess the performance of this mixed test and other two portmanteau tests in Li and Li (2008). A real example is given.

Suggested Citation

  • Zhu, Ke, 2012. "A mixed portmanteau test for ARMA-GARCH model by the quasi-maximum exponential likelihood estimation approach," MPRA Paper 40382, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:40382
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/40382/2/MPRA_paper_40382.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    2. H. Wong & W. Li, 2002. "Detecting and Diagnostic Checking Multivariate Conditional Heteroscedastic Time Series Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 45-59, March.
    3. Berkes, István & Horváth, Lajos & Kokoszka, Piotr, 2003. "Asymptotics For Garch Squared Residual Correlations," Econometric Theory, Cambridge University Press, vol. 19(4), pages 515-540, August.
    4. W. K. Li & T. K. Mak, 1994. "On The Squared Residual Autocorrelations In Non‐Linear Time Series With Conditional Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(6), pages 627-636, November.
    5. A. I. McLeod & W. K. Li, 1983. "Diagnostic Checking Arma Time Series Models Using Squared‐Residual Autocorrelations," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 269-273, July.
    6. Guodong Li & Wai Keung Li, 2008. "Least absolute deviation estimation for fractionally integrated autoregressive moving average time series models with conditional heteroscedasticity," Biometrika, Biometrika Trust, vol. 95(2), pages 399-414.
    7. Ling, Shiqing, 2007. "Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models," Journal of Econometrics, Elsevier, vol. 140(2), pages 849-873, October.
    8. Liang Peng, 2003. "Least absolute deviations estimation for ARCH and GARCH models," Biometrika, Biometrika Trust, vol. 90(4), pages 967-975, December.
    9. Peng, Liang & Yao, Qiwei, 2003. "Least absolute deviations estimation for ARCH and GARCH models," LSE Research Online Documents on Economics 5828, London School of Economics and Political Science, LSE Library.
    10. Francq, Christian & Roy, Roch & Zakoian, Jean-Michel, 2005. "Diagnostic Checking in ARMA Models With Uncorrelated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 532-544, June.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Heung Wong & Shiqing Ling, 2005. "Mixed Portmanteau Tests for Time‐Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 569-579, July.
    13. Francq, Christian & Lepage, Guillaume & Zakoïan, Jean-Michel, 2011. "Two-stage non Gaussian QML estimation of GARCH models and testing the efficiency of the Gaussian QMLE," Journal of Econometrics, Elsevier, vol. 165(2), pages 246-257.
    14. Carbon, Michel & Francq, Christian, 2010. "Portmanteau goodness-of-fit test for asymmetric power GARCH models," MPRA Paper 27686, University Library of Munich, Germany.
    15. Shao, Xiaofeng, 2011. "Testing For White Noise Under Unknown Dependence And Its Applications To Diagnostic Checking For Time Series Models," Econometric Theory, Cambridge University Press, vol. 27(2), pages 312-343, April.
    16. Guodong Li & Wai Keung Li, 2005. "Diagnostic checking for time series models with conditional heteroscedasticity estimated by the least absolute deviation approach," Biometrika, Biometrika Trust, vol. 92(3), pages 691-701, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaxing Yang & Shiqing Ling, 2017. "Inference for Heavy-Tailed and Multiple-Threshold Double Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 318-333, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Min & Zhu, Ke, 2013. "Sign-based portmanteau test for ARCH-type models with heavy-tailed innovations," MPRA Paper 50487, University Library of Munich, Germany.
    2. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    3. Ke Zhu, 2016. "Bootstrapping the portmanteau tests in weak auto-regressive moving average models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 463-485, March.
    4. Chen, Min & Zhu, Ke, 2015. "Sign-based portmanteau test for ARCH-type models with heavy-tailed innovations," Journal of Econometrics, Elsevier, vol. 189(2), pages 313-320.
    5. Francq, Christian & Zakoïan, Jean-Michel, 2010. "Inconsistency of the MLE and inference based on weighted LS for LARCH models," Journal of Econometrics, Elsevier, vol. 159(1), pages 151-165, November.
    6. Li, Dong & Zhang, Xingfa & Zhu, Ke & Ling, Shiqing, 2018. "The ZD-GARCH model: A new way to study heteroscedasticity," Journal of Econometrics, Elsevier, vol. 202(1), pages 1-17.
    7. Christian FRANCQ & Jean-Michel ZAKOIAN, 2009. "Properties of the QMLE and the Weighted LSE for LARCH(q) Models," Working Papers 2009-19, Center for Research in Economics and Statistics.
    8. Li, Dong & Ling, Shiqing & Zhu, Ke, 2016. "ZD-GARCH model: a new way to study heteroscedasticity," MPRA Paper 68621, University Library of Munich, Germany.
    9. repec:hal:journl:peer-00732536 is not listed on IDEAS
    10. Zhu, Ke & Li, Wai Keung, 2013. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52344, University Library of Munich, Germany.
    11. Yi-Ting Chen, 2008. "A unified approach to standardized-residuals-based correlation tests for GARCH-type models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 111-133.
    12. Kwan, Wilson & Li, Wai Keung & Li, Guodong, 2012. "On the estimation and diagnostic checking of the ARFIMA–HYGARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3632-3644.
    13. Andreou, Elena & Werker, Bas J.M., 2015. "Residual-based rank specification tests for AR–GARCH type models," Journal of Econometrics, Elsevier, vol. 185(2), pages 305-331.
    14. Ling, Shiqing, 2007. "Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models," Journal of Econometrics, Elsevier, vol. 140(2), pages 849-873, October.
    15. Zhu, Ke, 2015. "Hausman tests for the error distribution in conditionally heteroskedastic models," MPRA Paper 66991, University Library of Munich, Germany.
    16. Mo Zhou & Liang Peng & Rongmao Zhang, 2021. "Empirical likelihood test for the application of swqmele in fitting an arma‐garch model," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 222-239, March.
    17. Yacouba Boubacar Maïnassara & Othman Kadmiri & Bruno Saussereau, 2022. "Portmanteau test for the asymmetric power GARCH model when the power is unknown," Statistical Papers, Springer, vol. 63(3), pages 755-793, June.
    18. Iglesias, Emma M. & Linton, Oliver, 2009. "Estimation of tail thickness parameters from GJR-GARCH models," UC3M Working papers. Economics we094726, Universidad Carlos III de Madrid. Departamento de Economía.
    19. Christian Francq & Jean-Michel Zakoïan, 2013. "Optimal predictions of powers of conditionally heteroscedastic processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 345-367, March.
    20. Yi-Ting Chen & Zhongjun Qu, 2015. "M Tests with a New Normalization Matrix," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 617-652, May.
    21. Zhu, Ke & Li, Wai Keung, 2015. "A bootstrapped spectral test for adequacy in weak ARMA models," Journal of Econometrics, Elsevier, vol. 187(1), pages 113-130.

    More about this item

    Keywords

    ARMA-GARCH model; LAD estimator; mixed portmanteau test; model diagnostics; quasi-maximum exponential likelihood estimator;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:40382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.