Optimal estimating function for weak location‐scale dynamic models
Author
Abstract
Suggested Citation
DOI: 10.1111/jtsa.12684
Download full text from publisher
References listed on IDEAS
- Broze, Laurence & Francq, Christian & Zakoian, Jean-Michel, 2001.
"Non-redundancy of high order moment conditions for efficient GMM estimation of weak AR processes,"
Economics Letters, Elsevier, vol. 71(3), pages 317-322, June.
- BROZE, Laurence & FRANCQ, Christian & ZAKOIAN, Jean-Michel, 2000. "Non redundancy of high order moment conditions for efficient GMM estimation of weak AR processes," LIDAM Discussion Papers CORE 2000033, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BROZE, Laurence & FRANCQ , Christian & ZAKOIAN, Jean-Michel, 2001. "Non-redundancy of high order moment conditions for efficient GMM estimation of weak AR processes," LIDAM Reprints CORE 1576, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
- Hansen, Bruce E, 1994.
"Autoregressive Conditional Density Estimation,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
- Hansen, B.E., 1992. "Autoregressive Conditional Density Estimation," RCER Working Papers 322, University of Rochester - Center for Economic Research (RCER).
- Tom Doan, "undated". "RATS programs to replicate Hansen's GARCH models with time-varying t-densities," Statistical Software Components RTZ00086, Boston College Department of Economics.
- Francq, Christian & Thieu, Le Quyen, 2019.
"Qml Inference For Volatility Models With Covariates,"
Econometric Theory, Cambridge University Press, vol. 35(1), pages 37-72, February.
- Francq, Christian & Thieu, Le Quyen, 2015. "Qml inference for volatility models with covariates," MPRA Paper 63198, University Library of Munich, Germany.
- Mauro Bernardi & Leopoldo Catania, 2018. "The model confidence set package for R," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 8(2), pages 144-158.
- Ke Zhu, 2016.
"Bootstrapping the portmanteau tests in weak auto-regressive moving average models,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 463-485, March.
- Zhu, Ke, 2015. "Bootstrapping the portmanteau tests in weak auto-regressive moving average models," MPRA Paper 61930, University Library of Munich, Germany.
- Zhu, Ke & Li, Wai Keung, 2015.
"A bootstrapped spectral test for adequacy in weak ARMA models,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 113-130.
- Zhu, Ke & Li, Wai-Keung, 2013. "A bootstrapped spectral test for adequacy in weak ARMA models," MPRA Paper 51224, University Library of Munich, Germany.
- Li, David X & Turtle, H J, 2000. "Semiparametric ARCH Models: An Estimating Function Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 174-186, April.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Shao, Xiaofeng, 2011. "Testing For White Noise Under Unknown Dependence And Its Applications To Diagnostic Checking For Time Series Models," Econometric Theory, Cambridge University Press, vol. 27(2), pages 312-343, April.
- Tingguo Zheng & Han Xiao & Rong Chen, 2022. "Generalized autoregressive moving average models with GARCH errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 125-146, January.
- Richard A. Davis & Konstantinos Fokianos & Scott H. Holan & Harry Joe & James Livsey & Robert Lund & Vladas Pipiras & Nalini Ravishanker, 2021. "Count Time Series: A Methodological Review," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1533-1547, May.
- Hiroomi Kanai & Hiroaki Ogata & Masanobu Taniguchi, 2010. "Estimating function approach for CHARN Models," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 1-21.
- Yacouba Boubacar Maïnassara & Bruno Saussereau, 2018. "Diagnostic Checking in Multivariate ARMA Models With Dependent Errors Using Normalized Residual Autocorrelations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1813-1827, October.
- Francq, Christian & Roy, Roch & Zakoian, Jean-Michel, 2005. "Diagnostic Checking in ARMA Models With Uncorrelated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 532-544, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yacouba Boubacar Maïnassara & Youssef Esstafa & Bruno Saussereau, 2021. "Estimating FARIMA models with uncorrelated but non-independent error terms," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 549-608, October.
- Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
- Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
- Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
- Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
- Li, Muyi & Zhang, Yanfen, 2022. "Bootstrapping multivariate portmanteau tests for vector autoregressive models with weak assumptions on errors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
- Lyócsa, Štefan & Todorova, Neda, 2021. "What drives volatility of the U.S. oil and gas firms?," Energy Economics, Elsevier, vol. 100(C).
- Min Liu & Wei‐Chong Choo & Chi‐Chuan Lee & Chien‐Chiang Lee, 2023. "Trading volume and realized volatility forecasting: Evidence from the China stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 76-100, January.
- Christian Conrad & Onno Kleen, 2020. "Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 19-45, January.
- Joseph Ngatchou-Wandji & Marwa Ltaifa & Didier Alain Njamen Njomen & Jia Shen, 2022. "Nonparametric Estimation of the Density Function of the Distribution of the Noise in CHARN Models," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
- Li, Jia & Patton, Andrew J., 2018.
"Asymptotic inference about predictive accuracy using high frequency data,"
Journal of Econometrics, Elsevier, vol. 203(2), pages 223-240.
- Jia Li & Andrew J. Patton, 2013. "Asymptotic Inference about Predictive Accuracy Using High Frequency Data," Working Papers 13-27, Duke University, Department of Economics.
- Vacca, Gianmarco & Zoia, Maria Grazia & Bagnato, Luca, 2022. "Forecasting in GARCH models with polynomially modified innovations," International Journal of Forecasting, Elsevier, vol. 38(1), pages 117-141.
- Kenneth West & Ka-fu Wong & Stanislav Anatolyev, 2009.
"Instrumental Variables Estimation of Heteroskedastic Linear Models Using All Lags of Instruments,"
Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 441-467.
- West,K.D. & Wong,K.-F. & Anatolyev,S., 2001. "Instrumental variables estimation of heteroskedastic linear models using all lags of instruments," Working papers 20, Wisconsin Madison - Social Systems.
- Kenneth D. West & Ka-fu Wong & Stanislav Anatolyev, 2007. "Instrumental Variables Estimation of Heteroskedastic Linear Models Using All Lags of Instruments," NBER Technical Working Papers 0338, National Bureau of Economic Research, Inc.
- Kenneth D. West & Ka-fu Wong & Stanislav Anatolyev, 2007. "Instrumental Variables Estimation of Heteroskedastic Linear Models Using All Lags of Instruments," NBER Working Papers 13134, National Bureau of Economic Research, Inc.
- Royer, Julien, 2021. "Conditional asymmetry in Power ARCH($\infty$) models," MPRA Paper 109118, University Library of Munich, Germany.
- Hassanniakalager, Arman & Baker, Paul L. & Platanakis, Emmanouil, 2024. "A False Discovery Rate approach to optimal volatility forecasting model selection," International Journal of Forecasting, Elsevier, vol. 40(3), pages 881-902.
- Zhiyuan Pan & Jun Zhang & Yudong Wang & Juan Huang, 2024. "Modeling and forecasting stock return volatility using the HARGARCH model with VIX information," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1383-1403, August.
- Ahmed BenSaïda & Sabri Boubaker & Duc Khuong Nguyen & Skander Slim, 2018. "Value‐at‐risk under market shifts through highly flexible models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(8), pages 790-804, December.
- Royer, Julien, 2023. "Conditional asymmetry in Power ARCH(∞) models," Journal of Econometrics, Elsevier, vol. 234(1), pages 178-204.
- Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
- Daniel Borup & Martin Thyrsgaard, 2017. "Statistical tests for equal predictive ability across multiple forecasting methods," CREATES Research Papers 2017-19, Department of Economics and Business Economics, Aarhus University.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:44:y:2023:i:5-6:p:533-555. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.