IDEAS home Printed from https://ideas.repec.org/a/csb/stintr/v13y2012i2p261-278.html
   My bibliography  Save this article

Estimation of parameters for small areas using hierarchical Bayes method in the case of known model hyperparameters

Author

Listed:
  • Jan Kubacki

Abstract

In the paper the method of parameters estimation using hierarchical Bayes (HB) method in the case of known model hyperparameters for a priori conditionals was presented. This approach has some advantage in comparison with subjective model parameters selection because of more simulation stability and allows obtaining estimates that has more regular distribution. As an example the data about average per capita income from Polish Household Budget Survey for counties (NUTS4) and auxiliary variables from Polish Tax Register (POLTAX) were used. The computation was done using WinBUGS software and R-project environment with R2WinBUGS package, which control the simulations in WinBUGS, and coda package, which allows performing the analysis of simulation results. In the paper sample code in R-project that can be used as a pattern for further similar applications was also presented. The efficiency of hierarchical Bayes estimation with other small area methods was compared. Such comparison was done for HB and EBLUP techniques, for which some consistency related to the precision of estimates obtained using both techniques was achieved.

Suggested Citation

  • Jan Kubacki, 2012. "Estimation of parameters for small areas using hierarchical Bayes method in the case of known model hyperparameters," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 13(2), pages 261-278, June.
  • Handle: RePEc:csb:stintr:v:13:y:2012:i:2:p:261-278
    as

    Download full text from publisher

    File URL: http://index.stat.gov.pl/repec/files/csb/stintr/csb_stintr_v13_2012_i2_n5.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sturtz, Sibylle & Ligges, Uwe & Gelman, Andrew, 2005. "R2WinBUGS: A Package for Running WinBUGS from R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i03).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Kubacki & Alina Jędrzejczak, 2016. "Small Area Estimation Of Income Under Spatial Sar Model," Statistics in Transition New Series, Polish Statistical Association, vol. 17(3), pages 365-390, September.
    2. Alina Jędrzejczak & Jan Kubacki, 2016. "Small Area Estimation of Income Under Spatial Sar Model," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 17(3), pages 365-390, September.
    3. Kubacki Jan & Jędrzejczak Alina, 2016. "Small Area Estimation of Income under Spatial Sar Model," Statistics in Transition New Series, Statistics Poland, vol. 17(3), pages 365-390, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lachaud, Michée A. & Bravo-Ureta, Boris E., 2022. "A Bayesian statistical analysis of return to agricultural R&D investment in Latin America: Implications for food security," Technology in Society, Elsevier, vol. 70(C).
    2. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    3. Liang, Zhongyao & Qian, Song S. & Wu, Sifeng & Chen, Huili & Liu, Yong & Yu, Yanhong & Yi, Xuan, 2019. "Using Bayesian change point model to enhance understanding of the shifting nutrients-phytoplankton relationship," Ecological Modelling, Elsevier, vol. 393(C), pages 120-126.
    4. Qian Wu & Monique Vanerum & Anouk Agten & Andrés Christiansen & Frank Vandenabeele & Jean-Michel Rigo & Rianne Janssen, 2021. "Certainty-Based Marking on Multiple-Choice Items: Psychometrics Meets Decision Theory," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 518-543, June.
    5. Horrocks, Julie & Rueffer, Matthew, 2014. "A Bayesian approach to estimating animal density from binary acoustic transects," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 17-25.
    6. Sakshaug Joseph W. & Wiśniowski Arkadiusz & Ruiz Diego Andres Perez & Blom Annelies G., 2019. "Supplementing Small Probability Samples with Nonprobability Samples: A Bayesian Approach," Journal of Official Statistics, Sciendo, vol. 35(3), pages 653-681, September.
    7. Eugenia Buta & Stephanie S. O’Malley & Ralitza Gueorguieva, 2018. "Bayesian joint modelling of longitudinal data on abstinence, frequency and intensity of drinking in alcoholism trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 869-888, June.
    8. Millington, James D.A. & Walters, Michael B. & Matonis, Megan S. & Liu, Jianguo, 2013. "Filling the gap: A compositional gap regeneration model for managed northern hardwood forests," Ecological Modelling, Elsevier, vol. 253(C), pages 17-27.
    9. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    10. Zhao, Qing & Boomer, G. Scott & Silverman, Emily & Fleming, Kathy, 2017. "Accounting for the temporal variation of spatial effect improves inference and projection of population dynamics models," Ecological Modelling, Elsevier, vol. 360(C), pages 252-259.
    11. Adrian D Vickers & Claire Ainsworth & Reema Mody & Annika Bergman & Caroline S Ling & Jasmina Medjedovic & Michael Smyth, 2016. "Systematic Review with Network Meta-Analysis: Comparative Efficacy of Biologics in the Treatment of Moderately to Severely Active Ulcerative Colitis," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-21, October.
    12. Marco Gramatica & Peter Congdon & Silvia Liverani, 2021. "Bayesian modelling for spatially misaligned health areal data: A multiple membership approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 645-666, June.
    13. Yong Li & Zeng Tao & Jun Yu, "undated". "Robust Deviance Information Criterion for Latent Variable Models," Working Papers CoFie-04-2012, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    14. repec:jss:jstsof:36:c01 is not listed on IDEAS
    15. Abadi, Fitsum & Gimenez, Olivier & Jakober, Hans & Stauber, Wolfgang & Arlettaz, Raphaël & Schaub, Michael, 2012. "Estimating the strength of density dependence in the presence of observation errors using integrated population models," Ecological Modelling, Elsevier, vol. 242(C), pages 1-9.
    16. Leandro García Barrado & Els Coart & Tomasz Burzykowski, 2017. "Estimation of diagnostic accuracy of a combination of continuous biomarkers allowing for conditional dependence between the biomarkers and the imperfect reference-test," Biometrics, The International Biometric Society, vol. 73(2), pages 646-655, June.
    17. Shirin Moghaddam & John Newell & John Hinde, 2022. "A Bayesian Approach for Imputation of Censored Survival Data," Stats, MDPI, vol. 5(1), pages 1-19, January.
    18. Alina Jędrzejczak & Jan Kubacki, 2016. "Small Area Estimation of Income Under Spatial Sar Model," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 17(3), pages 365-390, September.
    19. Mirjana Glisovic‐Bensa & Walter W. Piegorsch & Edward J. Bedrick, 2024. "Bayesian benchmark dose risk assessment with mixed‐factor quantal data," Environmetrics, John Wiley & Sons, Ltd., vol. 35(5), August.
    20. Będowska-Sójka, Barbara & Kliber, Agata, 2022. "Can cryptocurrencies hedge oil price fluctuations? A pandemic perspective," Energy Economics, Elsevier, vol. 115(C).
    21. Earl W Duncan & Kerrie L Mengersen, 2020. "Comparing Bayesian spatial models: Goodness-of-smoothing criteria for assessing under- and over-smoothing," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-28, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:csb:stintr:v:13:y:2012:i:2:p:261-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Beata Witek (email available below). General contact details of provider: https://edirc.repec.org/data/gusgvpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.