IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v181y2018i3p869-888.html
   My bibliography  Save this article

Bayesian joint modelling of longitudinal data on abstinence, frequency and intensity of drinking in alcoholism trials

Author

Listed:
  • Eugenia Buta
  • Stephanie S. O’Malley
  • Ralitza Gueorguieva

Abstract

In alcoholism research, several complementary outcomes are of interest: abstinence from drinking during a specific time frame, and, when the individual is drinking, frequency of drinking (the proportion of days on which drinking occurs) and intensity of drinking (the average number of drinks per drinking day). The outcomes are often measured repeatedly over time on the same subject and, although they are closely related, they are rarely modelled together. We propose a joint model that allows us to fit these longitudinal outcomes simultaneously, using correlated random effects to model the association between the outcomes and between repeated measurements on the same subject. The model has three parts: a logistic part for sustained abstinence over the period of interest, a truncated binomial part for frequency of drinking and a log‐normal model for drinking intensity when drinking occurs. Because of the computational impracticality of fitting models with many random effects by using standard frequentist approaches, we use a Bayesian approach to fit the joint model. We also conduct a simulation study to investigate the gains in parameter estimate bias and mean‐squared error associated with joint versus separate modelling. We illustrate the approach on data from an alcoholism clinical trial.

Suggested Citation

  • Eugenia Buta & Stephanie S. O’Malley & Ralitza Gueorguieva, 2018. "Bayesian joint modelling of longitudinal data on abstinence, frequency and intensity of drinking in alcoholism trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 869-888, June.
  • Handle: RePEc:bla:jorssa:v:181:y:2018:i:3:p:869-888
    DOI: 10.1111/rssa.12334
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12334
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12334?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brian Neelon & Pulak Ghosh & Patrick F. Loebs, 2013. "A spatial Poisson hurdle model for exploring geographic variation in emergency department visits," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(2), pages 389-413, February.
    2. Paul S. Albert, 2000. "A Transitional Model for Longitudinal Binary Data Subject to Nonignorable Missing Data," Biometrics, The International Biometric Society, vol. 56(2), pages 602-608, June.
    3. D. B. Dunson, 2000. "Bayesian latent variable models for clustered mixed outcomes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 355-366.
    4. Ralitza V. Gueorguieva, 2005. "Comments about Joint Modeling of Cluster Size and Binary and Continuous Subunit-Specific Outcomes," Biometrics, The International Biometric Society, vol. 61(3), pages 862-866, September.
    5. Sturtz, Sibylle & Ligges, Uwe & Gelman, Andrew, 2005. "R2WinBUGS: A Package for Running WinBUGS from R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i03).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julie S. Najita & Yi Li & Paul J. Catalano, 2009. "A novel application of a bivariate regression model for binary and continuous outcomes to studies of fetal toxicity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 555-573, September.
    2. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
    3. Lachaud, Michée A. & Bravo-Ureta, Boris E., 2022. "A Bayesian statistical analysis of return to agricultural R&D investment in Latin America: Implications for food security," Technology in Society, Elsevier, vol. 70(C).
    4. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    5. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
    6. Liang, Zhongyao & Qian, Song S. & Wu, Sifeng & Chen, Huili & Liu, Yong & Yu, Yanhong & Yi, Xuan, 2019. "Using Bayesian change point model to enhance understanding of the shifting nutrients-phytoplankton relationship," Ecological Modelling, Elsevier, vol. 393(C), pages 120-126.
    7. Lawrence N Kazembe, 2013. "A Bayesian Two Part Model Applied to Analyze Risk Factors of Adult Mortality with Application to Data from Namibia," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-10, September.
    8. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    9. Jaakko Nevalainen & Somnath Datta & Hannu Oja, 2014. "Inference on the marginal distribution of clustered data with informative cluster size," Statistical Papers, Springer, vol. 55(1), pages 71-92, February.
    10. Qian Wu & Monique Vanerum & Anouk Agten & Andrés Christiansen & Frank Vandenabeele & Jean-Michel Rigo & Rianne Janssen, 2021. "Certainty-Based Marking on Multiple-Choice Items: Psychometrics Meets Decision Theory," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 518-543, June.
    11. Ali Noudoostbeni & Kiran Kaur & Hashem Salarzadeh Jenatabadi, 2018. "A Comparison of Structural Equation Modeling Approaches with DeLone & McLean’s Model: A Case Study of Radio-Frequency Identification User Satisfaction in Malaysian University Libraries," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    12. Horrocks, Julie & Rueffer, Matthew, 2014. "A Bayesian approach to estimating animal density from binary acoustic transects," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 17-25.
    13. Sakshaug Joseph W. & Wiśniowski Arkadiusz & Ruiz Diego Andres Perez & Blom Annelies G., 2019. "Supplementing Small Probability Samples with Nonprobability Samples: A Bayesian Approach," Journal of Official Statistics, Sciendo, vol. 35(3), pages 653-681, September.
    14. Dexen D. Z. Xi & Charmaine B. Dean & Stephen W. Taylor, 2021. "Modeling the duration and size of wildfires using joint mixture models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    15. Millington, James D.A. & Walters, Michael B. & Matonis, Megan S. & Liu, Jianguo, 2013. "Filling the gap: A compositional gap regeneration model for managed northern hardwood forests," Ecological Modelling, Elsevier, vol. 253(C), pages 17-27.
    16. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    17. Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
    18. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    19. Mark Rooij, 2018. "Transitional modeling of experimental longitudinal data with missing values," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 107-130, March.
    20. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:181:y:2018:i:3:p:869-888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.