IDEAS home Printed from https://ideas.repec.org/a/csb/stintr/v17y2016i3p365-390.html
   My bibliography  Save this article

Small Area Estimation of Income Under Spatial Sar Model

Author

Listed:
  • Alina Jędrzejczak
  • Jan Kubacki

Abstract

The paper presents the method of hierarchical Bayes (HB) estimation under small area models with spatially correlated random effects and a spatial structure implied by the Simultaneous Autoregressive (SAR) process. The idea was to improve the spatial EBLUP by incorporating the HB approach into the estimation algorithm. The computation procedure applied in the paper uses the concept of sampling from a posterior distribution under generalized linear mixed models implemented in WinBUGS software and adapts the idea of parameter estimation for small areas by means of the HB method in the case of known model hyperparameters. The illustration of the approach mentioned above was based on a real-world example concerning household income data. The precision of the direct estimators was determined using own three-stage procedure which employs Balanced Repeated Replication, bootstrap and Generalized Variance Function. Additional simulations were conducted to show the influence of the spatial autoregression coefficient on the estimation error reduction. The computations performed by ‘sae’ package for R project and a special procedure for WinBUGS reveal that the method provides reliable estimates of small area means. For high spatial correlation between domains, noticeable MSE reduction was observed, which seems more evident for HB-SAR method as compared with the traditional spatial EBLUP. In our opinion, the Gibbs sampler, revealing the simultaneous nature of processes, especially for random effects, can be a good starting point for the simulations based on stochastic SAR processes.

Suggested Citation

  • Alina Jędrzejczak & Jan Kubacki, 2016. "Small Area Estimation of Income Under Spatial Sar Model," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 17(3), pages 365-390, September.
  • Handle: RePEc:csb:stintr:v:17:y:2016:i:3:p:365-390
    as

    Download full text from publisher

    File URL: http://index.stat.gov.pl/repec/files/csb/stintr/csb_stintr_v17_2016_i3_n2.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bivand, Roger & Piras, Gianfranco, 2015. "Comparing Implementations of Estimation Methods for Spatial Econometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i18).
    2. Monica Pratesi & Nicola Salvati, 2008. "Small area estimation: the EBLUP estimator based on spatially correlated random area effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 113-141, February.
    3. Jan Kubacki, 2012. "Estimation of parameters for small areas using hierarchical Bayes method in the case of known model hyperparameters," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 13(2), pages 261-278, June.
    4. W. R. Gilks & N. G. Best & K. K. C. Tan, 1995. "Adaptive Rejection Metropolis Sampling Within Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(4), pages 455-472, December.
    5. Sturtz, Sibylle & Ligges, Uwe & Gelman, Andrew, 2005. "R2WinBUGS: A Package for Running WinBUGS from R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i03).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kevin Dayaratna & Jesse Crosson & Chandler Hubbard, 2022. "Closed Form Bayesian Inferences for Binary Logistic Regression with Applications to American Voter Turnout," Stats, MDPI, vol. 5(4), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kubacki Jan & Jędrzejczak Alina, 2016. "Small Area Estimation of Income under Spatial Sar Model," Statistics in Transition New Series, Polish Statistical Association, vol. 17(3), pages 365-390, September.
    2. Jan Kubacki & Alina Jędrzejczak, 2016. "Small Area Estimation Of Income Under Spatial Sar Model," Statistics in Transition New Series, Polish Statistical Association, vol. 17(3), pages 365-390, September.
    3. Alina Jędrzejczak & Jan Kubacki, 2019. "Estimation Of Income Characteristics For Regions In Poland Using Spatio-Temporal Small Area Models," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 113-134, December.
    4. Jędrzejczak Alina & Kubacki Jan, 2019. "Estimation Of Income Characteristics For Regions In Poland Using Spatio-Temporal Small Area Models," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 113-134, December.
    5. England, Peter, 2002. "Addendum to "Analytic and bootstrap estimates of prediction errors in claims reserving"," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 461-466, December.
    6. Guohuan Su & Adam Mertel & Sébastien Brosse & Justin M. Calabrese, 2023. "Species invasiveness and community invasibility of North American freshwater fish fauna revealed via trait-based analysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Lachaud, Michée A. & Bravo-Ureta, Boris E., 2022. "A Bayesian statistical analysis of return to agricultural R&D investment in Latin America: Implications for food security," Technology in Society, Elsevier, vol. 70(C).
    8. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    9. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.
    10. Jan Pablo Burgard & Domingo Morales & Anna-Lena Wölwer, 2022. "Small area estimation of socioeconomic indicators for sampled and unsampled domains," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 287-314, June.
    11. Yogi Vidyattama & Robert Tanton & Nicholas Biddle, 2015. "Estimating small-area Indigenous cultural participation from synthetic survey data," Environment and Planning A, , vol. 47(5), pages 1211-1228, May.
    12. Chakir, Raja & Lungarska, Anna, 2015. "Agricultural land rents in land use models: a spatial econometric analysis," 150th Seminar, October 22-23, 2015, Edinburgh, Scotland 212641, European Association of Agricultural Economists.
    13. Dian Handayani & Henk Folmer & Anang Kurnia & Khairil Anwar Notodiputro, 2018. "The spatial empirical Bayes predictor of the small area mean for a lognormal variable of interest and spatially correlated random effects," Empirical Economics, Springer, vol. 55(1), pages 147-167, August.
    14. Marcos-Martinez, Raymundo & Measham, Thomas G. & Fleming-Muñoz, David A., 2019. "Economic impacts of early unconventional gas mining: Lessons from the coal seam gas industry in New South Wales, Australia," Energy Policy, Elsevier, vol. 125(C), pages 338-346.
    15. Meilan An & Jeffrey Vitale & Kwideok Han & John N. Ng’ombe & Inbae Ji, 2021. "Effects of Spatial Characteristics on the Spread of the Highly Pathogenic Avian Influenza (HPAI) in Korea," IJERPH, MDPI, vol. 18(8), pages 1-13, April.
    16. Liang, Zhongyao & Qian, Song S. & Wu, Sifeng & Chen, Huili & Liu, Yong & Yu, Yanhong & Yi, Xuan, 2019. "Using Bayesian change point model to enhance understanding of the shifting nutrients-phytoplankton relationship," Ecological Modelling, Elsevier, vol. 393(C), pages 120-126.
    17. Nathaniel Tomasetti & Catherine Forbes & Anastasios Panagiotelis, 2019. "Updating Variational Bayes: Fast Sequential Posterior Inference," Monash Econometrics and Business Statistics Working Papers 13/19, Monash University, Department of Econometrics and Business Statistics.
    18. Demidova, Olga, 2021. "Methods of spatial econometrics and evaluation of government programs effectiveness," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 64, pages 107-134.
    19. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, September.
    20. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:csb:stintr:v:17:y:2016:i:3:p:365-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Beata Witek (email available below). General contact details of provider: https://edirc.repec.org/data/gusgvpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.