IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v242y2012icp1-9.html
   My bibliography  Save this article

Estimating the strength of density dependence in the presence of observation errors using integrated population models

Author

Listed:
  • Abadi, Fitsum
  • Gimenez, Olivier
  • Jakober, Hans
  • Stauber, Wolfgang
  • Arlettaz, Raphaël
  • Schaub, Michael

Abstract

Assessing the strength of density dependence is crucial for understanding population dynamics, but its estimation is difficult. Because estimates of population size and demographic parameters usually include errors due to imperfect detection, estimations of the strength of density dependence will be biased if obtained with conventional methods and lack statistical power to detect density dependence. We propose a Bayesian integrated population model to study density dependence. The model allows assessing the effect of density both on the population growth rate as well as the demographic parameters while accounting for imperfect detection. We studied the performance of this model using simulation and illustrate its use with data on red-backed shrikes Lanius collurio. Our simulation results showed that the strength of density dependence is identifiable and it was estimated with higher precision using the integrated population model than the conventional regression model. As expected, the conventional regression model tended to overestimate density dependence at the population level whereas underestimates at the demographic level, but the bias was small. The analysis of the red-backed shrike data revealed negative density dependence at the population level most likely mediated by a density-dependent decline in adult survival. This work highlights the potential of integrated population models in assessing density dependence and its practical application in population studies.

Suggested Citation

  • Abadi, Fitsum & Gimenez, Olivier & Jakober, Hans & Stauber, Wolfgang & Arlettaz, Raphaël & Schaub, Michael, 2012. "Estimating the strength of density dependence in the presence of observation errors using integrated population models," Ecological Modelling, Elsevier, vol. 242(C), pages 1-9.
  • Handle: RePEc:eee:ecomod:v:242:y:2012:i:c:p:1-9
    DOI: 10.1016/j.ecolmodel.2012.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001200227X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Russell B. Millar, 2009. "Comparison of Hierarchical Bayesian Models for Overdispersed Count Data using DIC and Bayes' Factors," Biometrics, The International Biometric Society, vol. 65(3), pages 962-969, September.
    2. Sturtz, Sibylle & Ligges, Uwe & Gelman, Andrew, 2005. "R2WinBUGS: A Package for Running WinBUGS from R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i03).
    3. Richard Barker & David Fletcher & Paul Scofield, 2002. "Measuring density dependence in survival from mark-recapture data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(1-4), pages 305-313.
    4. O. Gimenez & C. Crainiceanu & C. Barbraud & S. Jenouvrier & B. J. T. Morgan, 2006. "Semiparametric Regression in Capture–Recapture Modeling," Biometrics, The International Biometric Society, vol. 62(3), pages 691-698, September.
    5. John M Drake, 2005. "Density-Dependent Demographic Variation Determines Extinction Rate of Experimental Populations," PLOS Biology, Public Library of Science, vol. 3(7), pages 1-1, June.
    6. P. Besbeas & S. N. Freeman & B. J. T. Morgan & E. A. Catchpole, 2002. "Integrating Mark–Recapture–Recovery and Census Data to Estimate Animal Abundance and Demographic Parameters," Biometrics, The International Biometric Society, vol. 58(3), pages 540-547, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barraquand, Frédéric & Gimenez, Olivier, 2019. "Integrating multiple data sources to fit matrix population models for interacting species," Ecological Modelling, Elsevier, vol. 411(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abadi, Fitsum & Barbraud, Christophe & Besson, Dominique & Bried, Joël & Crochet, Pierre-André & Delord, Karine & Forcada, Jaume & Grosbois, Vladimir & Phillips, Richard A. & Sagar, Paul & Thompson, P, 2014. "Importance of accounting for phylogenetic dependence in multi-species mark–recapture studies," Ecological Modelling, Elsevier, vol. 273(C), pages 236-241.
    2. Stoklosa, Jakub & Dann, Peter & Huggins, Richard M. & Hwang, Wen-Han, 2016. "Estimation of survival and capture probabilities in open population capture–recapture models when covariates are subject to measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 74-86.
    3. Gimenez, Olivier & Rossi, Vivien & Choquet, Rémi & Dehais, Camille & Doris, Blaise & Varella, Hubert & Vila, Jean-Pierre & Pradel, Roger, 2007. "State-space modelling of data on marked individuals," Ecological Modelling, Elsevier, vol. 206(3), pages 431-438.
    4. Tempel, Douglas J. & Peery, M.Z. & Gutiérrez, R.J., 2014. "Using integrated population models to improve conservation monitoring: California spotted owls as a case study," Ecological Modelling, Elsevier, vol. 289(C), pages 86-95.
    5. Lachaud, Michée A. & Bravo-Ureta, Boris E., 2022. "A Bayesian statistical analysis of return to agricultural R&D investment in Latin America: Implications for food security," Technology in Society, Elsevier, vol. 70(C).
    6. Liang, Zhongyao & Qian, Song S. & Wu, Sifeng & Chen, Huili & Liu, Yong & Yu, Yanhong & Yi, Xuan, 2019. "Using Bayesian change point model to enhance understanding of the shifting nutrients-phytoplankton relationship," Ecological Modelling, Elsevier, vol. 393(C), pages 120-126.
    7. Kjær, Lene J. & Schauber, Eric M., 2022. "The effect of landscape, transmission mode and social behavior on disease transmission: Simulating the transmission of chronic wasting disease in white-tailed deer (Odocoileus virginianus) populations," Ecological Modelling, Elsevier, vol. 472(C).
    8. Zhang, Hongmei & Ghosh, Kaushik & Ghosh, Pulak, 2012. "Sampling designs via a multivariate hypergeometric-Dirichlet process model for a multi-species assemblage with unknown heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2562-2573.
    9. Nichols, J.M. & Spendelow, J.A. & Nichols, J.D., 2017. "Using Optimal Transport Theory to Estimate Transition Probabilities in Metapopulation Dynamics," Ecological Modelling, Elsevier, vol. 359(C), pages 311-319.
    10. Leo Polansky & Ken B. Newman & Lara Mitchell, 2021. "Improving inference for nonlinear state‐space models of animal population dynamics given biased sequential life stage data," Biometrics, The International Biometric Society, vol. 77(1), pages 352-361, March.
    11. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    12. Zhao, Qing & Boomer, G. Scott & Silverman, Emily & Fleming, Kathy, 2017. "Accounting for the temporal variation of spatial effect improves inference and projection of population dynamics models," Ecological Modelling, Elsevier, vol. 360(C), pages 252-259.
    13. D. L. Borchers & B. C. Stevenson & D. Kidney & L. Thomas & T. A. Marques, 2015. "A Unifying Model for Capture-Recapture and Distance Sampling Surveys of Wildlife Populations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 195-204, March.
    14. Adrian D Vickers & Claire Ainsworth & Reema Mody & Annika Bergman & Caroline S Ling & Jasmina Medjedovic & Michael Smyth, 2016. "Systematic Review with Network Meta-Analysis: Comparative Efficacy of Biologics in the Treatment of Moderately to Severely Active Ulcerative Colitis," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-21, October.
    15. Blanca Sarzo & Ruth King & David Conesa & Jonas Hentati-Sundberg, 2021. "Correcting Bias in Survival Probabilities for Partially Monitored Populations via Integrated Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 200-219, June.
    16. Marco Gramatica & Peter Congdon & Silvia Liverani, 2021. "Bayesian modelling for spatially misaligned health areal data: A multiple membership approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 645-666, June.
    17. Stephen N. Freeman & Nicholas J. B. Isaac & Panagiotis Besbeas & Emily B. Dennis & Byron J. T. Morgan, 2021. "A Generic Method for Estimating and Smoothing Multispecies Biodiversity Indicators Using Intermittent Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 71-89, March.
    18. Yong Li & Zeng Tao & Jun Yu, "undated". "Robust Deviance Information Criterion for Latent Variable Models," Working Papers CoFie-04-2012, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    19. repec:jss:jstsof:36:c01 is not listed on IDEAS
    20. Kathryn M. Irvine & T. J. Rodhouse & Ilai N. Keren, 2016. "Extending Ordinal Regression with a Latent Zero-Augmented Beta Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 619-640, December.
    21. Iraj Kazemi & Fatemeh Hassanzadeh, 2021. "Marginalized random-effects models for clustered binomial data through innovative link functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 197-228, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:242:y:2012:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.