IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v80y2014icp17-25.html
   My bibliography  Save this article

A Bayesian approach to estimating animal density from binary acoustic transects

Author

Listed:
  • Horrocks, Julie
  • Rueffer, Matthew

Abstract

A Bayesian model is proposed for estimating abundance or density of animals from passive acoustic binary data. The data are collected at points along one or more transects, and the points are spaced so that a single individual can be heard multiple times. Thus successive data points are dependent and this dependence is exploited to simultaneously estimate density, range of detection and probability of detection. The data are assumed to follow a homogeneous Poisson process. The Bayesian model combines a prior distribution for the model parameters, with a second-order Markov approximation to the likelihood. Sensitivity of the model to choice of priors is investigated. The method is illustrated using acoustic data from a survey of sperm whales (Physeter macrocephalus).

Suggested Citation

  • Horrocks, Julie & Rueffer, Matthew, 2014. "A Bayesian approach to estimating animal density from binary acoustic transects," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 17-25.
  • Handle: RePEc:eee:csdana:v:80:y:2014:i:c:p:17-25
    DOI: 10.1016/j.csda.2014.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314001765
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julie Horrocks & David C. Hamilton & Hal Whitehead, 2011. "A Likelihood Approach to Estimating Animal Density from Binary Acoustic Transects," Biometrics, The International Biometric Society, vol. 67(3), pages 681-690, September.
    2. Guo X. & Carlin B.P., 2004. "Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages," The American Statistician, American Statistical Association, vol. 58, pages 16-24, February.
    3. Sturtz, Sibylle & Ligges, Uwe & Gelman, Andrew, 2005. "R2WinBUGS: A Package for Running WinBUGS from R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i03).
    4. Shane Gero & Dan Engelhaupt & Luke Rendell & Hal Whitehead, 2009. "Who Cares? Between-group variation in alloparental caregiving in sperm whales," Behavioral Ecology, International Society for Behavioral Ecology, vol. 20(4), pages 838-843.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Gao & J. Miller & Chengjie Xiong & Julia Beiser & Mae Gordon, 2011. "A joint-modeling approach to assess the impact of biomarker variability on the risk of developing clinical outcome," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(1), pages 83-100, March.
    2. Lachaud, Michée A. & Bravo-Ureta, Boris E., 2022. "A Bayesian statistical analysis of return to agricultural R&D investment in Latin America: Implications for food security," Technology in Society, Elsevier, vol. 70(C).
    3. Liang, Zhongyao & Qian, Song S. & Wu, Sifeng & Chen, Huili & Liu, Yong & Yu, Yanhong & Yi, Xuan, 2019. "Using Bayesian change point model to enhance understanding of the shifting nutrients-phytoplankton relationship," Ecological Modelling, Elsevier, vol. 393(C), pages 120-126.
    4. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    5. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    6. Zhao, Qing & Boomer, G. Scott & Silverman, Emily & Fleming, Kathy, 2017. "Accounting for the temporal variation of spatial effect improves inference and projection of population dynamics models," Ecological Modelling, Elsevier, vol. 360(C), pages 252-259.
    7. Adrian D Vickers & Claire Ainsworth & Reema Mody & Annika Bergman & Caroline S Ling & Jasmina Medjedovic & Michael Smyth, 2016. "Systematic Review with Network Meta-Analysis: Comparative Efficacy of Biologics in the Treatment of Moderately to Severely Active Ulcerative Colitis," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-21, October.
    8. Marco Gramatica & Peter Congdon & Silvia Liverani, 2021. "Bayesian modelling for spatially misaligned health areal data: A multiple membership approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 645-666, June.
    9. Michael J. Crowther & Keith R. Abrams & Paul C. Lambert, 2013. "Joint modeling of longitudinal and survival data," Stata Journal, StataCorp LP, vol. 13(1), pages 165-184, March.
    10. Yong Li & Zeng Tao & Jun Yu, "undated". "Robust Deviance Information Criterion for Latent Variable Models," Working Papers CoFie-04-2012, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    11. repec:jss:jstsof:36:c01 is not listed on IDEAS
    12. Abadi, Fitsum & Gimenez, Olivier & Jakober, Hans & Stauber, Wolfgang & Arlettaz, Raphaël & Schaub, Michael, 2012. "Estimating the strength of density dependence in the presence of observation errors using integrated population models," Ecological Modelling, Elsevier, vol. 242(C), pages 1-9.
    13. Wei Yang & Dawei Xie & Qiang Pan & Harold I. Feldman & Wensheng Guo, 2017. "Joint Modeling of Repeated Measures and Competing Failure Events in a Study of Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 504-524, December.
    14. Mirjana Glisovic‐Bensa & Walter W. Piegorsch & Edward J. Bedrick, 2024. "Bayesian benchmark dose risk assessment with mixed‐factor quantal data," Environmetrics, John Wiley & Sons, Ltd., vol. 35(5), August.
    15. Będowska-Sójka, Barbara & Kliber, Agata, 2022. "Can cryptocurrencies hedge oil price fluctuations? A pandemic perspective," Energy Economics, Elsevier, vol. 115(C).
    16. Earl W Duncan & Kerrie L Mengersen, 2020. "Comparing Bayesian spatial models: Goodness-of-smoothing criteria for assessing under- and over-smoothing," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-28, May.
    17. repec:jss:jstsof:40:i05 is not listed on IDEAS
    18. Guy Abel & Jakub Bijak & Jonathan J. Forster & James Raymer & Peter W.F. Smith & Jackie S.T. Wong, 2013. "Integrating uncertainty in time series population forecasts: An illustration using a simple projection model," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(43), pages 1187-1226.
    19. Yong Li & Zhongxin Ni & Jie Zhang, 2011. "An Efficient Stochastic Simulation Algorithm for Bayesian Unit Root Testing in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 37(3), pages 237-248, March.
    20. Juha Karvanen & Ari Rantanen & Lasse Luoma, 2013. "Survey data and Bayesian analysis: a cost-efficient way to estimate customer equity," Papers 1304.5380, arXiv.org, revised May 2014.
    21. repec:jss:jstsof:37:i05 is not listed on IDEAS
    22. Ram Thapa & Harold E. Burkhart & Jie Li & Yili Hong, 2016. "Modeling Clustered Survival Times of Loblolly Pine with Time-dependent Covariates and Shared Frailties," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 92-110, March.
    23. Abadi, Fitsum & Barbraud, Christophe & Besson, Dominique & Bried, Joël & Crochet, Pierre-André & Delord, Karine & Forcada, Jaume & Grosbois, Vladimir & Phillips, Richard A. & Sagar, Paul & Thompson, P, 2014. "Importance of accounting for phylogenetic dependence in multi-species mark–recapture studies," Ecological Modelling, Elsevier, vol. 273(C), pages 236-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:80:y:2014:i:c:p:17-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.