IDEAS home Printed from https://ideas.repec.org/a/ces/ifosdt/v67y2014i15p35-40.html
   My bibliography  Save this article

Das ifo Beschäftigungsbarometer und der deutsche Arbeitsmarkt

Author

Listed:
  • Steffen Henzel
  • Klaus Wohlrabe

Abstract

Das ifo Beschäftigungsbarometer und das IAB-Arbeitsmarktbarometer, beides Indikatoren für den deutschen Arbeitsmarkt, weisen einen engen Zusammenhang zur deutschen Arbeitsmarktlage auf. Allerdings gibt es Unterschiede, wenn verschiedene Zielgrößen betrachtet werden. Das ifo Beschäftigungsbarometer bildet Änderungen der Beschäftigung am zuverlässigsten ab, das IAB-Arbeitsmarktbarometer die monatliche Dynamik der Zahl der registrierten Arbeitslosen. Insgesamt erweist sich das ifo Beschäftigungsbarometer als vorteilhaft, wenn ökonomische Entscheidungen im Vordergrund stehen. Schwächen zeigt es hingegen, wenn es um Änderungen in den rechtlichen Rahmenbedingungen oder der Erhebungspraxis geht. So stellt die Einführung von Hartz IV oder des Saisonkurzarbeitergeldes am Bau besondere Herausforderungen an Unternehmensbefragungen.

Suggested Citation

  • Steffen Henzel & Klaus Wohlrabe, 2014. "Das ifo Beschäftigungsbarometer und der deutsche Arbeitsmarkt," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 67(15), pages 35-40, August.
  • Handle: RePEc:ces:ifosdt:v:67:y:2014:i:15:p:35-40
    as

    Download full text from publisher

    File URL: https://www.ifo.de/DocDL/ifosd_2014_15_3.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abberger, Klaus, 2007. "Qualitative business surveys and the assessment of employment -- A case study for Germany," International Journal of Forecasting, Elsevier, vol. 23(2), pages 249-258.
    2. Georg Goldrian, 2004. "Handbuch der umfragebasierten Konjunkturforschung," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Lehmann, 2023. "The Forecasting Power of the ifo Business Survey," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(1), pages 43-94, March.
    2. Stefan Sauer & Klaus Wohlrabe, 2020. "ifo Handbuch der Konjunkturumfragen," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 88.
    3. R. Lehmann & K. Wohlrabe, 2017. "Experts, firms, consumers or even hard data? Forecasting employment in Germany," Applied Economics Letters, Taylor & Francis Journals, vol. 24(4), pages 279-283, February.
    4. Robert Lehmann & Timo Wollmershäuser, 2016. "Zur Prognosegüte der gesamtwirtschaftlichen Stundenproduktivität," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 69(22), pages 57-61, November.
    5. Klaus Wohlrabe, 2018. "Das neue ifo Beschäftigungsbarometer," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 71(09), pages 34-36, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klaus Abberger & Sascha Becker & Barbara Hofmann & Klaus Wohlrabe, 2007. "Mikrodaten im ifo Institut für Wirtschaftsforschung – Bestand, Verwendung und Zugang," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 1(1), pages 27-42, June.
    2. Klaus Wohlrabe, 2018. "Das neue ifo Beschäftigungsbarometer," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 71(09), pages 34-36, May.
    3. Sascha O. Becker & Klaus Wohlrabe, 2008. "European Data Watch: Micro Data at the Ifo Institute for Economic Research – The “Ifo Business Survey”, Usage and Access," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 128(2), pages 307-319.
    4. Robert Lehmann, 2023. "The Forecasting Power of the ifo Business Survey," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(1), pages 43-94, March.
    5. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72, July.
    6. Stefan Sauer & Klaus Wohlrabe, 2020. "ifo Handbuch der Konjunkturumfragen," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 88.
    7. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    8. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    9. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 1-14, January.
    10. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming," IREA Working Papers 201711, University of Barcelona, Research Institute of Applied Economics, revised May 2017.
    11. Tatiana Cesaroni & Stefano Iezzi, 2017. "The Predictive Content of Business Survey Indicators: Evidence from SIGE," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 75-104, May.
    12. Blanchflower, David G. & Bryson, Alex, 2021. "The Economics of Walking About and Predicting Unemployment," GLO Discussion Paper Series 922, Global Labor Organization (GLO).
    13. Oliver Falck & Stefan Kipar, 2010. "Die High-Tech-Offensive im Freistaat Bayern," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 63(03), pages 21-26, February.
    14. Foroni, Claudia & Ravazzolo, Francesco & Rossini, Luca, 2023. "Are low frequency macroeconomic variables important for high frequency electricity prices?," Economic Modelling, Elsevier, vol. 120(C).
    15. Martinsen, Kjetil & Ravazzolo, Francesco & Wulfsberg, Fredrik, 2014. "Forecasting macroeconomic variables using disaggregate survey data," International Journal of Forecasting, Elsevier, vol. 30(1), pages 65-77.
    16. Klaus Wohlrabe, 2012. "Prognose des Dienstleistungssektors in Deutschland," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 65(01), pages 31-39, January.
    17. Oscar Claveria & Petar Sorić, 2023. "Labour market uncertainty after the irruption of COVID-19," Empirical Economics, Springer, vol. 64(4), pages 1897-1945, April.
    18. Klaus Abberger & Wolfgang Nierhaus, 2007. "Das ifo Geschäftsklima: Ein zuverlässiger Frühindikator," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 60(05), pages 25-30, March.
    19. Klaus Abberger & Wolfgang Nierhaus, 2019. "Zur Produktionsbehinderung der Unternehmen im Konjunkturzyklus: Eine Compositional-Data-Analyse," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 72(05), pages 21-27, March.
    20. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," IREA Working Papers 201801, University of Barcelona, Research Institute of Applied Economics, revised Jan 2018.

    More about this item

    Keywords

    Arbeitsmarkt; Erwerbstätigkeit; Arbeitslosigkeit; Arbeitsmarktpolitik; Deutschland;
    All these keywords.

    JEL classification:

    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ifosdt:v:67:y:2014:i:15:p:35-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/ifooode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.