IDEAS home Printed from https://ideas.repec.org/p/hig/wpaper/113sti2020.html
   My bibliography  Save this paper

Forecasting Employment In Small Businesses In Russia: The Relevance Of Business Tendency Surveys

Author

Listed:
  • Inna S. Lola

    (National Research University Higher School of Economics)

  • Anton Manukov

    (National Research University Higher School of Economics)

Abstract

The Article Studies The Predictive Capabilities Of Qualitative Assessments Of Employment Expectations Obtained From Business Tendency Observations Of Entrepreneurial Activity, Which Are Currently A Widespread Source Of Economic Information Both In National And International Practice. The Study Is Based On Market Surveys Conducted By Rosstat, Which Characterize The Expected Level Of Business Activity In The Segment Of Small Enterprises From The 1st Quarter Of 2008 To The 2nd Quarter Of 2019. The Aim Of The Study Is To Prove The Existence Of A Stable Statistically Significant Relationship Between Predicted Estimates Of Employment With The Dynamics Of Growth Rate Cycles Of The Corresponding Quantitative Statistical Macro-Aggregates In Various Sectors And, Therefore, The Relevance Of Predictive Models Of Employment Change Based On The Results Of Business Surveys. It Is Shown That Entrepreneurial Assessments And Expectations Are Effective Predictive Indicators For Predicting Employment Dynamics In The Short Term (Two To Four Months) And Identifying Turning Points In Employment Dynamics In The Small Sector. Small Business, As One Of The Most Sensitive Segments, Is One Of The First To React To The Current Changes, Which Makes Forecasting In This Segment Especially Important.

Suggested Citation

  • Inna S. Lola & Anton Manukov, 2020. "Forecasting Employment In Small Businesses In Russia: The Relevance Of Business Tendency Surveys," HSE Working papers WP BRP 113/STI/2020, National Research University Higher School of Economics.
  • Handle: RePEc:hig:wpaper:113sti2020
    as

    Download full text from publisher

    File URL: https://wp.hse.ru/data/2020/10/27/1359252200/113STI2020.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansson, Jesper & Jansson, Per & Lof, Marten, 2005. "Business survey data: Do they help in forecasting GDP growth?," International Journal of Forecasting, Elsevier, vol. 21(2), pages 377-389.
    2. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    3. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    4. Flavio Calvino & Chiara Criscuolo, 2019. "Business dynamics and digitalisation," OECD Science, Technology and Industry Policy Papers 62, OECD Publishing.
    5. Hanssens, Dominique M & Vanden Abeele, Pierre M, 1987. "A Time-Series Study of the Formation and Predictive Performance of EEC Production Survey Expectations," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 507-519, October.
    6. Abberger, Klaus, 2007. "Qualitative business surveys and the assessment of employment -- A case study for Germany," International Journal of Forecasting, Elsevier, vol. 23(2), pages 249-258.
    7. Klaus Abberger, 2007. "Forecasting Quarter-on-Quarter Changes of German GDP with Monthly Business Tendency Survey Results," ifo Working Paper Series 40, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    8. Claveria, Oscar & Pons, Ernest & Ramos, Raul, 2007. "Business and consumer expectations and macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 47-69.
    9. Atsushi Inoue & Lutz Kilian, 2005. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," Econometric Reviews, Taylor & Francis Journals, vol. 23(4), pages 371-402.
    10. MacMillan, Ian C. & Day, Diana L., 1987. "Corporate ventures into industrial markets: Dynamics of aggressive entry," Journal of Business Venturing, Elsevier, vol. 2(1), pages 29-39.
    11. Tim Mazzarol & Sophie Reboud, 2020. "The Role of the Small Business Within the Economy," Springer Texts in Business and Economics, in: Small Business Management, edition 4, chapter 1, pages 1-29, Springer.
    12. Balsmeier, Benjamin & Woerter, Martin, 2019. "Is this time different? How digitalization influences job creation and destruction," Research Policy, Elsevier, vol. 48(8), pages 1-1.
    13. David B. Audretsch & Albert N. Link & Martijn Hasselt, 2019. "Knowledge begets knowledge: university knowledge spillovers and the output of scientific papers from U.S. Small Business Innovation Research (SBIR) projects," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1367-1383, December.
    14. Lemmens, A. & Croux, C. & Dekimpe, M.G., 2005. "On the Predictive Content of Production Surveys : a Pan-European Study," Other publications TiSEM adab9f0e-7dfd-4dc4-bd92-b, Tilburg University, School of Economics and Management.
    15. Michael Graff & Massimo Mannino & Michael Siegenthaler, 2012. "A real time evaluation of employment forecasts in Switzerland," KOF Working papers 12-320, KOF Swiss Economic Institute, ETH Zurich.
    16. Flavio Calvino & Chiara Criscuolo & Luca Marcolin & Mariagrazia Squicciarini, 2018. "A taxonomy of digital intensive sectors," OECD Science, Technology and Industry Working Papers 2018/14, OECD Publishing.
    17. Tim Mazzarol & Sophie Reboud, 2020. "Work Book: The Role of the Small Business Within the Economy," Springer Texts in Business and Economics, in: Workbook for Small Business Management, edition 4, chapter 0, pages 1-7, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    2. Boriss Siliverstovs, 2013. "Do business tendency surveys help in forecasting employment?: A real-time evidence for Switzerland," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 129-151.
    3. Robert Lehmann, 2023. "The Forecasting Power of the ifo Business Survey," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(1), pages 43-94, March.
    4. Knut Are Aastveit & Anne Sofie Jore & Francesco Ravazzolo, 2014. "Forecasting recessions in real time," Working Paper 2014/02, Norges Bank.
    5. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 1-14, January.
    6. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming," IREA Working Papers 201711, University of Barcelona, Research Institute of Applied Economics, revised May 2017.
    7. Martinsen, Kjetil & Ravazzolo, Francesco & Wulfsberg, Fredrik, 2014. "Forecasting macroeconomic variables using disaggregate survey data," International Journal of Forecasting, Elsevier, vol. 30(1), pages 65-77.
    8. Mansoor Maitah & Daniel Toth & Elena Kuzmenko & Karel r dl & Helena Rezbov & Petra nov, 2016. "Forecast of Employment in Switzerland: The Macroeconomic View," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 132-138.
    9. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Empirical modelling of survey-based expectations for the design of economic indicators in five European regions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 46(2), pages 205-227, May.
    10. Boriss Siliverstovs, 2010. "Assessing Predictive Content of the KOF Barometer in Real Time," KOF Working papers 10-249, KOF Swiss Economic Institute, ETH Zurich.
    11. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    12. Robert Lehmann, 2021. "Forecasting exports across Europe: What are the superior survey indicators?," Empirical Economics, Springer, vol. 60(5), pages 2429-2453, May.
    13. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "A new approach for the quantification of qualitative measures of economic expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2685-2706, November.
    14. G. Bruno & L. Crosilla & P. Margani, 2019. "Inspecting the Relationship Between Business Confidence and Industrial Production: Evidence on Italian Survey Data," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 15(1), pages 1-24, April.
    15. Lui, Silvia & Mitchell, James & Weale, Martin, 2011. "The utility of expectational data: Firm-level evidence using matched qualitative-quantitative UK surveys," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1128-1146, October.
    16. R. Lehmann & K. Wohlrabe, 2017. "Experts, firms, consumers or even hard data? Forecasting employment in Germany," Applied Economics Letters, Taylor & Francis Journals, vol. 24(4), pages 279-283, February.
    17. Foroni, Claudia & Ravazzolo, Francesco & Rossini, Luca, 2023. "Are low frequency macroeconomic variables important for high frequency electricity prices?," Economic Modelling, Elsevier, vol. 120(C).
    18. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," AQR Working Papers 201801, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2018.
    19. repec:iab:iabjlr:v:53:i:1:p:art.3 is not listed on IDEAS
    20. Tatiana Cesaroni & Stefano Iezzi, 2017. "The Predictive Content of Business Survey Indicators: Evidence from SIGE," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 75-104, May.
    21. Klein, Lawrence R. & Özmucur, Süleyman, 2010. "The use of consumer and business surveys in forecasting," Economic Modelling, Elsevier, vol. 27(6), pages 1453-1462, November.

    More about this item

    Keywords

    Small Business; Business Tendency Surveys; Employment; Forecasting; Russia.;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure
    • L11 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Production, Pricing, and Market Structure; Size Distribution of Firms
    • L60 - Industrial Organization - - Industry Studies: Manufacturing - - - General
    • L70 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - General
    • L81 - Industrial Organization - - Industry Studies: Services - - - Retail and Wholesale Trade; e-Commerce

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hig:wpaper:113sti2020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Shamil Abdulaev or Shamil Abdulaev (email available below). General contact details of provider: https://edirc.repec.org/data/hsecoru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.