IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006955.html
   My bibliography  Save this article

Model diagnostics and refinement for phylodynamic models

Author

Listed:
  • Max S Y Lau
  • Bryan T Grenfell
  • Colin J Worby
  • Gavin J Gibson

Abstract

Phylodynamic modelling, which studies the joint dynamics of epidemiological and evolutionary processes, has made significant progress in recent years due to increasingly available genomic data and advances in statistical modelling. These advances have greatly improved our understanding of transmission dynamics of many important pathogens. Nevertheless, there remains a lack of effective, targetted diagnostic tools for systematically detecting model mis-specification. Development of such tools is essential for model criticism, refinement, and calibration. The idea of utilising latent residuals for model assessment has already been exploited in general spatio-temporal epidemiological settings. Specifically, by proposing appropriately designed non-centered, re-parameterizations of a given epidemiological process, one can construct latent residuals with known sampling distributions which can be used to quantify evidence of model mis-specification. In this paper, we extend this idea to formulate a novel model-diagnostic framework for phylodynamic models. Using simulated examples, we show that our framework may effectively detect a particular form of mis-specification in a phylodynamic model, particularly in the event of superspreading. We also exemplify our approach by applying the framework to a dataset describing a local foot-and-mouth (FMD) outbreak in the UK, eliciting strong evidence against the assumption of no within-host-diversity in the outbreak. We further demonstrate that our framework can facilitate model calibration in real-life scenarios, by proposing a within-host-diversity model which appears to offer a better fit to data than one that assumes no within-host-diversity of FMD virus.Author summary: Integrated modelling of conventional epidemiological data and modern genomic data (i.e. phylodynamics) has made significant progress in recent years, due to the ever-increasing availability of genomic data and development of statistical methods. However, there is a lack of tools for carrying out effective diagnostics for phylodynamic models. We propose a novel model diagnostic framework that involves a latent residual process which is a priori independent of model assumptions and which can be used to quantify, and reveal the nature of, model inadequacy. Our results suggest that our framework may systematically detect deviation from a particular model assumption and greatly facilitate subsequent model calibration.

Suggested Citation

  • Max S Y Lau & Bryan T Grenfell & Colin J Worby & Gavin J Gibson, 2019. "Model diagnostics and refinement for phylodynamic models," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-17, April.
  • Handle: RePEc:plo:pcbi00:1006955
    DOI: 10.1371/journal.pcbi.1006955
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006955
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006955&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006955?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    2. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    3. Marco J Morelli & Gaël Thébaud & Joël Chadœuf & Donald P King & Daniel T Haydon & Samuel Soubeyrand, 2012. "A Bayesian Inference Framework to Reconstruct Transmission Trees Using Epidemiological and Genetic Data," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Max S Y Lau & Gavin J Gibson & Hola Adrakey & Amanda McClelland & Steven Riley & Jon Zelner & George Streftaris & Sebastian Funk & Jessica Metcalf & Benjamin D Dalziel & Bryan T Grenfell, 2017. "A mechanistic spatio-temporal framework for modelling individual-to-individual transmission—With an application to the 2014-2015 West Africa Ebola outbreak," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-18, October.
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    4. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    5. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    6. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    7. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    8. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    9. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    10. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    11. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    12. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    13. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    14. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    15. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    16. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    17. Simon Mak & Derek Bingham & Yi Lu, 2016. "A regional compound Poisson process for hurricane and tropical storm damage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 677-703, November.
    18. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    19. Huang, Zhaodong & Chien, Steven & Zhu, Wei & Zheng, Pengjun, 2022. "Scheduling wheel inspection for sustainable urban rail transit operation: A Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    20. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.