IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v412y2014icp137-148.html
   My bibliography  Save this article

Effect of time delay on pattern dynamics in a spatial epidemic model

Author

Listed:
  • Wang, Yi
  • Cao, Jinde
  • Sun, Gui-Quan
  • Li, Jing

Abstract

Time delay, accounting for constant incubation period or sojourn times in an infective state, widely exists in most biological systems like epidemiological models. However, the effect of time delay on spatial epidemic models is not well understood. In this paper, spatial pattern of an epidemic model with both nonlinear incidence rate and time delay is investigated. In particular, we mainly focus on the effect of time delay on the formation of spatial pattern. Through mathematical analysis, we gain the conditions for Hopf bifurcation and Turing bifurcation, and find exact Turing space in parameter space. Furthermore, numerical results show that time delay has a significant effect on pattern formation. The simulation results may enrich the finding of patterns and may well capture some key features in the epidemic models.

Suggested Citation

  • Wang, Yi & Cao, Jinde & Sun, Gui-Quan & Li, Jing, 2014. "Effect of time delay on pattern dynamics in a spatial epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 137-148.
  • Handle: RePEc:eee:phsmap:v:412:y:2014:i:c:p:137-148
    DOI: 10.1016/j.physa.2014.06.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114005135
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.06.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jing & Sun, Gui-Quan & Jin, Zhen, 2014. "Pattern formation of an epidemic model with time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 100-109.
    2. B. T. Grenfell & O. N. Bjørnstad & J. Kappey, 2001. "Travelling waves and spatial hierarchies in measles epidemics," Nature, Nature, vol. 414(6865), pages 716-723, December.
    3. Valenti, D. & Fiasconaro, A. & Spagnolo, B., 2004. "Stochastic resonance and noise delayed extinction in a model of two competing species," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 331(3), pages 477-486.
    4. Spagnolo, B. & La Barbera, A., 2002. "Role of the noise on the transient dynamics of an ecosystem of interacting species," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 315(1), pages 114-124.
    5. M. J. Keeling & M. E. J. Woolhouse & R. M. May & G. Davies & B. T. Grenfell, 2003. "Modelling vaccination strategies against foot-and-mouth disease," Nature, Nature, vol. 421(6919), pages 136-142, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Li, 2015. "Patch invasion in a spatial epidemic model," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 342-349.
    2. Han, Dun & Sun, Mei & Li, Dandan, 2015. "Epidemic process on activity-driven modular networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 354-362.
    3. Mann Manyombe, M.L. & Tsanou, B. & Mbang, J. & Bowong, S., 2017. "A metapopulation model for the population dynamics of anopheles mosquito," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 71-91.
    4. Hu, Junlang & Zhu, Linhe, 2021. "Turing pattern analysis of a reaction-diffusion rumor propagation system with time delay in both network and non-network environments," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    5. Alzahrani, Faris & Razzaq, Oyoon Abdul & Rehman, Daniyal Ur & Khan, Najeeb Alam & Alshomrani, Ali Saleh & Ullah, Malik Zaka, 2022. "Repercussions of unreported populace on disease dynamics and its optimal control through system of fractional order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    6. Batabyal, Saikat & Jana, Debaldev & Upadhyay, Ranjit Kumar, 2021. "Diffusion driven finite time blow-up and pattern formation in a mutualistic preys-sexually reproductive predator system: A comparative study," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    7. Jang, Junyoung & Kwon, Hee-Dae & Lee, Jeehyun, 2020. "Optimal control problem of an SIR reaction–diffusion model with inequality constraints," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 136-151.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun Zhang & Tao Yang & Shi-Xian Qu, 2021. "Impact of time delays and environmental noise on the extinction of a population dynamics model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-16, November.
    2. Valenti, D. & Tranchina, L. & Brai, M. & Caruso, A. & Cosentino, C. & Spagnolo, B., 2008. "Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy)," Ecological Modelling, Elsevier, vol. 213(3), pages 449-462.
    3. Rao, Feng & Wang, Weiming & Li, Zhenqing, 2009. "Spatiotemporal complexity of a predator–prey system with the effect of noise and external forcing," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1634-1644.
    4. Liu, Jian & Qiao, Zijian & Ding, Xiaojian & Hu, Bing & Zang, Chuanlai, 2021. "Stochastic resonance induced weak signal enhancement over controllable potential-well asymmetry," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    5. Nicola Bellomo & Richard Bingham & Mark A.J. Chaplain & Giovanni Dosi & Guido Forni & Damian A. Knopoff & John Lowengrub & Reidun Twarock & Maria Enrica Virgillito, 2020. "A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world," LEM Papers Series 2020/16, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Wang, Min & Fang, Yuwen & Luo, Yuhui & Yang, Fengzao & Zeng, Chunhua & Duan, Wei-Long, 2019. "Influence of non-Gaussian noise on the coherent feed-forward loop with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 46-55.
    7. Chryssi Giannitsarou & Stephen Kissler & Flavio Toxvaerd, 2021. "Waning Immunity and the Second Wave: Some Projections for SARS-CoV-2," American Economic Review: Insights, American Economic Association, vol. 3(3), pages 321-338, September.
    8. Huang, Dongwei & Wang, Hongli & Feng, Jianfeng & Zhu, Zhi-wen, 2006. "Hopf bifurcation of the stochastic model on HAB nonlinear stochastic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 1072-1079.
    9. Suresh, R. & Senthilkumar, D.V. & Lakshmanan, M. & Kurths, J., 2016. "Emergence of a common generalized synchronization manifold in network motifs of structurally different time-delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 235-245.
    10. Zhang, Wenyue & Shi, Peiming & Li, Mengdi & Han, Dongying, 2021. "A novel stochastic resonance model based on bistable stochastic pooling network and its application," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    11. Bashkirtseva, Irina & Ryashko, Lev & Ryazanova, Tatyana, 2019. "Stochastic variability and transitions to chaos in a hierarchical three-species population model," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 276-283.
    12. Morozov, Andrew Yu. & Almutairi, Dalal & Petrovskii, Sergei V. & Lai, Ying-Cheng, 2023. "Long transients in discontinuous time-discrete models of population dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    13. Kerr, Gilbert & González-Parra, Gilberto & Sherman, Michele, 2022. "A new method based on the Laplace transform and Fourier series for solving linear neutral delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    14. Stefan Sellman & Kimberly Tsao & Michael J Tildesley & Peter Brommesson & Colleen T Webb & Uno Wennergren & Matt J Keeling & Tom Lindström, 2018. "Need for speed: An optimized gridding approach for spatially explicit disease simulations," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-27, April.
    15. Li, Mengdi & Shi, Peiming & Zhang, Wenyue & Han, Dongying, 2021. "A novel underdamped continuous unsaturation bistable stochastic resonance method and its application," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    16. Ai, Hao & Yang, GuiJiang & Liu, Wei & Wang, Qiubao, 2023. "A fast search method for optimal parameters of stochastic resonance based on stochastic bifurcation and its application in fault diagnosis of rolling bearings," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    17. Sabbar, Yassine & Kiouach, Driss & Rajasekar, S.P. & El-idrissi, Salim El Azami, 2022. "The influence of quadratic Lévy noise on the dynamic of an SIC contagious illness model: New framework, critical comparison and an application to COVID-19 (SARS-CoV-2) case," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    18. Vladislav Soukhovolsky & Anton Kovalev & Yulia Ivanova & Olga Tarasova, 2023. "Autoregression, First Order Phase Transition, and Stochastic Resonance: A Comparison of Three Models for Forest Insect Outbreaks," Mathematics, MDPI, vol. 11(19), pages 1-19, October.
    19. Wu, Jian-Li & Duan, Wei-Long & Luo, Yuhui & Yang, Fengzao, 2020. "Time delay and non-Gaussian noise-enhanced stability of foraging colony system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    20. Peyrard, N. & Dieckmann, U. & Franc, A., 2008. "Long-range correlations improve understanding of the influence of network structure on contact dynamics," Theoretical Population Biology, Elsevier, vol. 73(3), pages 383-394.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:412:y:2014:i:c:p:137-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.