IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v8y2009i1n27.html
   My bibliography  Save this article

Bayesian Unsupervised Learning with Multiple Data Types

Author

Listed:
  • Agius Phaedra

    (MSKCC)

  • Ying Yiming

    (University of Bristol)

  • Campbell Colin

    (University of Bristol)

Abstract

We propose Bayesian generative models for unsupervised learning with two types of data and an assumed dependency of one type of data on the other. We consider two algorithmic approaches, based on a correspondence model, where latent variables are shared across datasets. These models indicate the appropriate number of clusters in addition to indicating relevant features in both types of data. We evaluate the model on artificially created data. We then apply the method to a breast cancer dataset consisting of gene expression and microRNA array data derived from the same patients. We assume partial dependence of gene expression on microRNA expression in this study. The method ranks genes within subtypes which have statistically significant abnormal expression and ranks associated abnormally expressing microRNA. We report a genetic signature for the basal-like subtype of breast cancer found across a number of previous gene expression array studies. Using the two algorithmic approaches we find that this signature also arises from clustering on the microRNA expression data and appears derivative from this data.

Suggested Citation

  • Agius Phaedra & Ying Yiming & Campbell Colin, 2009. "Bayesian Unsupervised Learning with Multiple Data Types," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-29, June.
  • Handle: RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:27
    DOI: 10.2202/1544-6115.1441
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1441
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1441?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sohail F. Tavazoie & Claudio Alarcón & Thordur Oskarsson & David Padua & Qiongqing Wang & Paula D. Bos & William L. Gerald & Joan Massagué, 2008. "Endogenous human microRNAs that suppress breast cancer metastasis," Nature, Nature, vol. 451(7175), pages 147-152, January.
    2. Dobra, Adrian & Hans, Chris & Jones, Beatrix & Nevins, J.R.Joseph R. & Yao, Guang & West, Mike, 2004. "Sparse graphical models for exploring gene expression data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 196-212, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giraud Christophe & Huet Sylvie & Verzelen Nicolas, 2012. "Graph Selection with GGMselect," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-52, February.
    2. Paci, Lucia & Consonni, Guido, 2020. "Structural learning of contemporaneous dependencies in graphical VAR models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    3. Wessel N. van Wieringen & Carel F. W. Peeters & Renee X. de Menezes & Mark A. van de Wiel, 2018. "Testing for pathway (in)activation by using Gaussian graphical models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1419-1436, November.
    4. Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
    5. Wang, Hao, 2010. "Sparse seemingly unrelated regression modelling: Applications in finance and econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2866-2877, November.
    6. Daniel Felix Ahelegbey & Luis Carvalho & Eric D. Kolaczyk, 2020. "A Bayesian Covariance Graph And Latent Position Model For Multivariate Financial Time Series," DEM Working Papers Series 181, University of Pavia, Department of Economics and Management.
    7. Christine Peterson & Francesco C. Stingo & Marina Vannucci, 2015. "Bayesian Inference of Multiple Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 159-174, March.
    8. Aliaksandr Hubin & Geir Storvik, 2024. "Sparse Bayesian Neural Networks: Bridging Model and Parameter Uncertainty through Scalable Variational Inference," Mathematics, MDPI, vol. 12(6), pages 1-28, March.
    9. Laurenţiu Cătălin Hinoveanu & Fabrizio Leisen & Cristiano Villa, 2020. "A loss‐based prior for Gaussian graphical models," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(4), pages 444-466, December.
    10. Kriti Puniyani & Eric P Xing, 2013. "GINI: From ISH Images to Gene Interaction Networks," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-15, October.
    11. Fabricio F Costa & Jared M Bischof & Elio F Vanin & Rishi R Lulla & Min Wang & Simone T Sredni & Veena Rajaram & Maria de Fátima Bonaldo & Deli Wang & Stewart Goldman & Tadanori Tomita & Marcelo B Soa, 2011. "Identification of MicroRNAs as Potential Prognostic Markers in Ependymoma," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-10, October.
    12. Xiaodong Cai & Juan Andrés Bazerque & Georgios B Giannakis, 2013. "Inference of Gene Regulatory Networks with Sparse Structural Equation Models Exploiting Genetic Perturbations," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-13, May.
    13. Chun, Hyonho & Lee, Myung Hee & Fleet, James C. & Oh, Ji Hwan, 2016. "Graphical models via joint quantile regression with component selection," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 162-171.
    14. Ashish Arora & Michelle Gittelman & Sarah Kaplan & John Lynch & Will Mitchell & Nicolaj Siggelkow & Mei Li & Ying Lin & Shuai Huang & Craig Crossland, 2016. "The use of sparse inverse covariance estimation for relationship detection and hypothesis generation in strategic management," Strategic Management Journal, Wiley Blackwell, vol. 37(1), pages 86-97, January.
    15. Villers Fanny & Schaeffer Brigitte & Bertin Caroline & Huet Sylvie, 2008. "Assessing the Validity Domains of Graphical Gaussian Models in Order to Infer Relationships among Components of Complex Biological Systems," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(2), pages 1-37, September.
    16. Zhixiang Lin & Tao Wang & Can Yang & Hongyu Zhao, 2017. "On joint estimation of Gaussian graphical models for spatial and temporal data," Biometrics, The International Biometric Society, vol. 73(3), pages 769-779, September.
    17. Chen, Shyh-Huei & Ip, Edward H. & Wang, Yuchung J., 2011. "Gibbs ensembles for nearly compatible and incompatible conditional models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1760-1769, April.
    18. Codazzi, Laura & Colombi, Alessandro & Gianella, Matteo & Argiento, Raffaele & Paci, Lucia & Pini, Alessia, 2022. "Gaussian graphical modeling for spectrometric data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    19. Yiming Hu & Hongyu Zhao, 2016. "CCor: A whole genome network‐based similarity measure between two genes," Biometrics, The International Biometric Society, vol. 72(4), pages 1216-1225, December.
    20. Nikolaos Petrakis & Stefano Peluso & Dimitris Fouskakis & Guido Consonni, 2020. "Objective methods for graphical structural learning," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 420-438, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.