IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v67y2011i4p1305-1313.html
   My bibliography  Save this article

Robust Estimation for Ordinary Differential Equation Models

Author

Listed:
  • J. Cao
  • L. Wang
  • J. Xu

Abstract

No abstract is available for this item.

Suggested Citation

  • J. Cao & L. Wang & J. Xu, 2011. "Robust Estimation for Ordinary Differential Equation Models," Biometrics, The International Biometric Society, vol. 67(4), pages 1305-1313, December.
  • Handle: RePEc:bla:biomet:v:67:y:2011:i:4:p:1305-1313
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2011.01577.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, January.
    2. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    3. Chen, Jianwei & Wu, Hulin, 2008. "Efficient Local Estimation for Time-Varying Coefficients in Deterministic Dynamic Models With Applications to HIV-1 Dynamics," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 369-384, March.
    4. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, January.
    5. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, January.
    6. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baisen Liu & Liangliang Wang & Yunlong Nie & Jiguo Cao, 2021. "Semiparametric Mixed-Effects Ordinary Differential Equation Models with Heavy-Tailed Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 428-445, September.
    2. Shizhe Chen & Ali Shojaie & Daniela M. Witten, 2017. "Network Reconstruction From High-Dimensional Ordinary Differential Equations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1697-1707, October.
    3. Xinyu Zhang & Jiguo Cao & Raymond J. Carroll, 2015. "On the selection of ordinary differential equation models with application to predator-prey dynamical models," Biometrics, The International Biometric Society, vol. 71(1), pages 131-138, March.
    4. Y. Villacampa & F. J. Navarro-González, 2022. "An Algorithm for Numerical Integration of ODE with Sampled Unknown Functional Factors," Mathematics, MDPI, vol. 10(9), pages 1-23, May.
    5. Liu, Baisen & Wang, Liangliang & Nie, Yunlong & Cao, Jiguo, 2019. "Bayesian inference of mixed-effects ordinary differential equations models using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 233-246.
    6. Liu Baisen & Wang Liangliang & Cao Jiguo, 2018. "Bayesian estimation of ordinary differential equation models when the likelihood has multiple local modes," Monte Carlo Methods and Applications, De Gruyter, vol. 24(2), pages 117-127, June.
    7. Xinyu Zhang & Jiguo Cao & Raymond J. Carroll, 2017. "Estimating varying coefficients for partial differential equation models," Biometrics, The International Biometric Society, vol. 73(3), pages 949-959, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hulin Wu & Hongqi Xue & Arun Kumar, 2012. "Numerical Discretization-Based Estimation Methods for Ordinary Differential Equation Models via Penalized Spline Smoothing with Applications in Biomedical Research," Biometrics, The International Biometric Society, vol. 68(2), pages 344-352, June.
    2. Nielsen, J.D. & Dean, C.B., 2008. "Adaptive functional mixed NHPP models for the analysis of recurrent event panel data," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3670-3685, March.
    3. Massimiliano Mazzanti & Antonio Musolesi, 2020. "Modeling Green Knowledge Production and Environmental Policies with Semiparametric Panel Data Regression models," SEEDS Working Papers 1420, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2020.
    4. J. D. Nielsen & C. B. Dean, 2008. "Clustered Mixed Nonhomogeneous Poisson Process Spline Models for the Analysis of Recurrent Event Panel Data," Biometrics, The International Biometric Society, vol. 64(3), pages 751-761, September.
    5. Wu, Ximing & Sickles, Robin, 2018. "Semiparametric estimation under shape constraints," Econometrics and Statistics, Elsevier, vol. 6(C), pages 74-89.
    6. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    7. Julie Vercelloni & M Julian Caley & Mohsen Kayal & Samantha Low-Choy & Kerrie Mengersen, 2014. "Understanding Uncertainties in Non-Linear Population Trajectories: A Bayesian Semi-Parametric Hierarchical Approach to Large-Scale Surveys of Coral Cover," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    8. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    9. Proietti, Tommaso, 2010. "Trend Estimation," MPRA Paper 21607, University Library of Munich, Germany.
    10. Samiran Sinha & Bani K. Mallick & Victor Kipnis & Raymond J. Carroll, 2010. "Semiparametric Bayesian Analysis of Nutritional Epidemiology Data in the Presence of Measurement Error," Biometrics, The International Biometric Society, vol. 66(2), pages 444-454, June.
    11. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    13. Javier Parada Gómez Urquiza & Alejandro López-Feldman, 2013. "Poverty dynamics in rural Mexico: What does the future hold?," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 55-74, November.
    14. Lee, Wang-Sheng & McKinnish, Terra, 2019. "Locus of control and marital satisfaction: Couple perspectives using Australian data," Journal of Economic Psychology, Elsevier, vol. 74(C).
    15. Bethany Everett & David Rehkopf & Richard Rogers, 2013. "The Nonlinear Relationship Between Education and Mortality: An Examination of Cohort, Race/Ethnic, and Gender Differences," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(6), pages 893-917, December.
    16. Göran Kauermann & Renate Meyer, 2014. "Penalized marginal likelihood estimation of finite mixtures of Archimedean copulas," Computational Statistics, Springer, vol. 29(1), pages 283-306, February.
    17. O. Gimenez & C. Crainiceanu & C. Barbraud & S. Jenouvrier & B. J. T. Morgan, 2006. "Semiparametric Regression in Capture–Recapture Modeling," Biometrics, The International Biometric Society, vol. 62(3), pages 691-698, September.
    18. Andy McKay & Emilie Perge, 2013. "How Strong is the Evidence for the Existence of Poverty Traps? A Multicountry Assessment," Journal of Development Studies, Taylor & Francis Journals, vol. 49(7), pages 877-897, July.
    19. Becker, William, 2020. "Metafunctions for benchmarking in sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    20. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:67:y:2011:i:4:p:1305-1313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.