IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v65y2009i3p928-936.html
   My bibliography  Save this article

Forcing Function Diagnostics for Nonlinear Dynamics

Author

Listed:
  • Giles Hooker

Abstract

No abstract is available for this item.

Suggested Citation

  • Giles Hooker, 2009. "Forcing Function Diagnostics for Nonlinear Dynamics," Biometrics, The International Biometric Society, vol. 65(3), pages 928-936, September.
  • Handle: RePEc:bla:biomet:v:65:y:2009:i:3:p:928-936
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2008.01172.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crainiceanu, Ciprian M. & Ruppert, David, 2004. "Likelihood ratio tests for goodness-of-fit of a nonlinear regression model," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 35-52, October.
    2. Ciprian Crainiceanu & David Ruppert & Gerda Claeskens & M. P. Wand, 2005. "Exact likelihood ratio tests for penalised splines," Biometrika, Biometrika Trust, vol. 92(1), pages 91-103, March.
    3. Yangxin Huang & Dacheng Liu & Hulin Wu, 2006. "Hierarchical Bayesian Methods for Estimation of Parameters in a Longitudinal HIV Dynamic System," Biometrics, The International Biometric Society, vol. 62(2), pages 413-423, June.
    4. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    5. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hooker, Giles & Ramsay, James O. & Xiao, Luo, 2016. "CollocInfer: Collocation Inference in Differential Equation Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 75(i02).
    2. Liu, Ran & Zhu, Lixing, 2023. "Specification testing for ordinary differential equation models with fixed design and applications to COVID-19 epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    3. K. Sham Bhat & David S. Mebane & Priyadarshi Mahapatra & Curtis B. Storlie, 2017. "Upscaling Uncertainty with Dynamic Discrepancy for a Multi-Scale Carbon Capture System," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1453-1467, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
    2. Hulin Wu & Hongqi Xue & Arun Kumar, 2012. "Numerical Discretization-Based Estimation Methods for Ordinary Differential Equation Models via Penalized Spline Smoothing with Applications in Biomedical Research," Biometrics, The International Biometric Society, vol. 68(2), pages 344-352, June.
    3. Lee, Kyoungjae & Lee, Jaeyong & Dass, Sarat C., 2018. "Inference for differential equation models using relaxation via dynamical systems," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 116-134.
    4. Giles Hooker, 2010. "Comments on: Dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 50-53, May.
    5. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    6. Commenges, D. & Jolly, D. & Drylewicz, J. & Putter, H. & Thiébaut, R., 2011. "Inference in HIV dynamics models via hierarchical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 446-456, January.
    7. Liu Baisen & Wang Liangliang & Cao Jiguo, 2018. "Bayesian estimation of ordinary differential equation models when the likelihood has multiple local modes," Monte Carlo Methods and Applications, De Gruyter, vol. 24(2), pages 117-127, June.
    8. Matthew Plumlee & V. Roshan Joseph & Hui Yang, 2016. "Calibrating Functional Parameters in the Ion Channel Models of Cardiac Cells," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 500-509, April.
    9. Xinyu Zhang & Jiguo Cao & Raymond J. Carroll, 2017. "Estimating varying coefficients for partial differential equation models," Biometrics, The International Biometric Society, vol. 73(3), pages 949-959, September.
    10. Liu, Baisen & Wang, Liangliang & Nie, Yunlong & Cao, Jiguo, 2019. "Bayesian inference of mixed-effects ordinary differential equations models using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 233-246.
    11. Zhou, Jie & Han, Lu & Liu, Sanyang, 2013. "Nonlinear mixed-effects state space models with applications to HIV dynamics," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1448-1456.
    12. Zhang, Tingting & Sun, Yinge & Li, Huazhang & Yan, Guofen & Tanabe, Seiji & Miao, Ruizhong & Wang, Yaotian & Caffo, Brian S. & Quigg, Mark S., 2020. "Bayesian inference of a directional brain network model for intracranial EEG data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    13. Hanwen Huang, 2022. "Bayesian multi‐level mixed‐effects model for influenza dynamics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1978-1995, November.
    14. Zaixing Li & Lixing Zhu, 2010. "On Variance Components in Semiparametric Mixed Models for Longitudinal Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 442-457, September.
    15. Qiu, Xing & Xu, Tao & Soltanalizadeh, Babak & Wu, Hulin, 2022. "Identifiability analysis of linear ordinary differential equation systems with a single trajectory," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    16. Hanwen Huang & Andreas Handel & Xiao Song, 2020. "A Bayesian approach to estimate parameters of ordinary differential equation," Computational Statistics, Springer, vol. 35(3), pages 1481-1499, September.
    17. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    18. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    19. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    20. Jaeger, Jonathan & Lambert, Philippe, 2012. "Bayesian penalized smoothing approaches in models specified using affine differential equations with unknown error distributions," LIDAM Discussion Papers ISBA 2012017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:65:y:2009:i:3:p:928-936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.