IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v16y2010i1p1-67n1.html
   My bibliography  Save this article

Adaptive weak approximation of reflected and stopped diffusions

Author

Listed:
  • Bayer Christian

    (Institute for Mathematics, Royal Institute of Technology, S-10044 Stockholm, Sweden, currently at Institute of Mathematics, TU Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany. E-mail: cbayer@kth.se)

  • Szepessy Anders

    (Institute for Mathematics, Royal Institute of Technology, S-10044 Stockholm, Sweden. E-mail: szepessy@kth.se)

  • Tempone Raúl

    (Applied Mathematics and Computational Sciences, KAUST, Thuwal, Saudi Arabia. E-mail: raul.tempone@kaust.edu.sa)

Abstract

We study the weak approximation problem of diffusions, which are reflected at a subset of the boundary of a domain and stopped at the remaining boundary. First, we derive an error representation for the projected Euler method of Costantini, Pacchiarotti and Sartoretto [Costantini et al., SIAM J. Appl. Math., 58(1):73–102, 1998], based on which we introduce two new algorithms. The first one uses a correction term from the representation in order to obtain a higher order of convergence, but the computation of the correction term is, in general, not feasible in dimensions d > 1. The second algorithm is adaptive in the sense of Moon, Szepessy, Tempone and Zouraris [Moon et al., Stoch. Anal. Appl., 23:511–558, 2005], using stochastic refinement of the time grid based on a computable error expansion derived from the representation. Regarding the stopped diffusion, it is based in the adaptive algorithm for purely stopped diffusions presented in Dzougoutov, Moon, von Schwerin, Szepessy and Tempone [Dzougoutov et al., Lect. Notes Comput. Sci. Eng., 44, 59–88, 2005]. We give numerical examples underlining the theoretical results.

Suggested Citation

  • Bayer Christian & Szepessy Anders & Tempone Raúl, 2010. "Adaptive weak approximation of reflected and stopped diffusions," Monte Carlo Methods and Applications, De Gruyter, vol. 16(1), pages 1-67, January.
  • Handle: RePEc:bpj:mcmeap:v:16:y:2010:i:1:p:1-67:n:1
    DOI: 10.1515/mcma.2010.001
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma.2010.001
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma.2010.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gobet, Emmanuel, 2000. "Weak approximation of killed diffusion using Euler schemes," Stochastic Processes and their Applications, Elsevier, vol. 87(2), pages 167-197, June.
    2. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hajime Kawakami, 2015. "Reconstruction algorithm for unknown cavities via Feynman–Kac type formula," Computational Optimization and Applications, Springer, vol. 61(1), pages 101-133, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoel Håkon & von Schwerin Erik & Szepessy Anders & Tempone Raúl, 2014. "Implementation and analysis of an adaptive multilevel Monte Carlo algorithm," Monte Carlo Methods and Applications, De Gruyter, vol. 20(1), pages 1-41, March.
    2. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    3. Yi Chen & Jing Dong & Hao Ni, 2021. "ɛ-Strong Simulation of Fractional Brownian Motion and Related Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 559-594, May.
    4. Jian Wang & Xiang Gao & Zhili Sun, 2021. "A Multilevel Simulation Method for Time-Variant Reliability Analysis," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    5. Ahmed Kebaier & J'er^ome Lelong, 2015. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Papers 1510.03590, arXiv.org, revised Jul 2017.
    6. Stéphane Crépey & Noufel Frikha & Azar Louzi & Gilles Pagès, 2023. "Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04304985, HAL.
    7. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    8. Lejay, Antoine & Maire, Sylvain, 2007. "Computing the principal eigenvalue of the Laplace operator by a stochastic method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 73(6), pages 351-363.
    9. Lay Harold A. & Colgin Zane & Reshniak Viktor & Khaliq Abdul Q. M., 2018. "On the implementation of multilevel Monte Carlo simulation of the stochastic volatility and interest rate model using multi-GPU clusters," Monte Carlo Methods and Applications, De Gruyter, vol. 24(4), pages 309-321, December.
    10. Hideyuki Tanaka & Toshihiro Yamada, 2012. "Strong Convergence for Euler-Maruyama and Milstein Schemes with Asymptotic Method," Papers 1210.0670, arXiv.org, revised Nov 2013.
    11. Nagy Shady Ahmed & El-Beltagy Mohamed A. & Wafa Mohamed, 2020. "Multilevel Monte Carlo by using the Halton sequence," Monte Carlo Methods and Applications, De Gruyter, vol. 26(3), pages 193-203, September.
    12. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
    13. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    14. Simonella, Roberta & Vázquez, Carlos, 2023. "XVA in a multi-currency setting with stochastic foreign exchange rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 59-79.
    15. Casella, Bruno & Roberts, Gareth O., 2011. "Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications," MPRA Paper 95217, University Library of Munich, Germany.
    16. Diana Dorobantu & Yahia Salhi & Pierre-Emmanuel Thérond, 2018. "Modelling net carrying amount of shares for market consistent valuation of life insurance liabilities," Working Papers hal-01840057, HAL.
    17. Aintablian, Sebouh & Khoury, Wissam El, 2017. "A simulation on the presence of competing bidders in mergers and acquisitions," Finance Research Letters, Elsevier, vol. 22(C), pages 233-243.
    18. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.
    19. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    20. Chang-han Rhee & Peter W. Glynn, 2012. "A new approach to unbiased estimation for SDE's," Papers 1207.2452, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:16:y:2010:i:1:p:1-67:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.