IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v61y2015i1p101-133.html
   My bibliography  Save this article

Reconstruction algorithm for unknown cavities via Feynman–Kac type formula

Author

Listed:
  • Hajime Kawakami

Abstract

In this paper, we consider an inverse problem of identifying one or more unknown cavities in a heat conductor. We propose an algorithm for reconstructing the position and shape of the unknown cavities using the measured surface temperature of the heat conductor. The heat conductor is discretized into small components, and we attempt to determine the components of the unknown cavities. Each of the components of the cavities is encoded as $$0,$$ 0 , and each of the other components is encoded as $$1.$$ 1 . Thus, the inverse problem is translated into a binary optimization problem. Our algorithm is based on a discrete probabilistic representation of a solution of an initial boundary value problem for the heat equation, which we call a discrete Feynman–Kac type formula. It uses a set of sample paths generated by the Monte-Carlo method. We can use this formula to naturally transform the binary optimization problem to an optimization problem with continuous variables. This continuous approach is used by the algorithm. Although the algorithm comprises some iterations, each iteration step can use a common set of sample paths. Thus, we only need one round of the Monte-Carlo-based simulation to obtain the set of sample paths. Our experiments suggest that the algorithm has an acceptable performance when there are one or two cavities. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Hajime Kawakami, 2015. "Reconstruction algorithm for unknown cavities via Feynman–Kac type formula," Computational Optimization and Applications, Springer, vol. 61(1), pages 101-133, May.
  • Handle: RePEc:spr:coopap:v:61:y:2015:i:1:p:101-133
    DOI: 10.1007/s10589-014-9706-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-014-9706-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-014-9706-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bayer Christian & Szepessy Anders & Tempone Raúl, 2010. "Adaptive weak approximation of reflected and stopped diffusions," Monte Carlo Methods and Applications, De Gruyter, vol. 16(1), pages 1-67, January.
    2. Walter Murray & Kien-Ming Ng, 2010. "An algorithm for nonlinear optimization problems with binary variables," Computational Optimization and Applications, Springer, vol. 47(2), pages 257-288, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marianna De Santis & Stefano Lucidi & Francesco Rinaldi, 2011. "A new class of functions for measuring solution integrality in the Feasibility Pump approach," DIS Technical Reports 2011-08, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    2. Javier Cano & Javier M. Moguerza & Francisco J. Prieto, 2017. "Using Improved Directions of Negative Curvature for the Solution of Bound-Constrained Nonconvex Problems," Journal of Optimization Theory and Applications, Springer, vol. 174(2), pages 474-499, August.
    3. Rupaj Kumar Nayak & Nirmalya Kumar Mohanty, 2020. "Solution of boolean quadratic programming problems by two augmented Lagrangian algorithms based on a continuous relaxation," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 792-825, April.
    4. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    5. Marianna De Santis & Stefano Lucidi & Francesco Rinaldi, 2013. "A new class of functions for measuring solution integrality in the Feasibility Pump approach: Complete Results," DIAG Technical Reports 2013-05, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    6. Md Saiful Islam & Md Sarowar Morshed & Md. Noor-E-Alam, 2022. "A Computational Framework for Solving Nonlinear Binary Optimization Problems in Robust Causal Inference," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3023-3041, November.
    7. Wendel Melo & Marcia Fampa & Fernanda Raupp, 2020. "An overview of MINLP algorithms and their implementation in Muriqui Optimizer," Annals of Operations Research, Springer, vol. 286(1), pages 217-241, March.
    8. Wendel Melo & Marcia Fampa & Fernanda Raupp, 2018. "Integrality gap minimization heuristics for binary mixed integer nonlinear programming," Journal of Global Optimization, Springer, vol. 71(3), pages 593-612, July.
    9. M. Santis & F. Rinaldi, 2012. "Continuous Reformulations for Zero–One Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 75-84, April.
    10. Nitish Das & P. Aruna Priya, 2019. "A Gradient-Based Interior-Point Method to Solve the Many-to-Many Assignment Problems," Complexity, Hindawi, vol. 2019, pages 1-13, July.
    11. Xiao Liu & Simge Küçükyavuz, 2018. "A polyhedral study of the static probabilistic lot-sizing problem," Annals of Operations Research, Springer, vol. 261(1), pages 233-254, February.
    12. Abdolmaleki, Mojtaba & Shahabi, Mehrdad & Yin, Yafeng & Masoud, Neda, 2021. "Itinerary planning for cooperative truck platooning," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 91-110.
    13. Wendel Melo & Marcia Fampa & Fernanda Raupp, 2014. "Integrating nonlinear branch-and-bound and outer approximation for convex Mixed Integer Nonlinear Programming," Journal of Global Optimization, Springer, vol. 60(2), pages 373-389, October.
    14. Ma, Cheng & Zhang, Liansheng, 2015. "On an exact penalty function method for nonlinear mixed discrete programming problems and its applications in search engine advertising problems," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 642-656.
    15. Michael Haythorpe & Walter Murray, 2022. "Finding a Hamiltonian cycle by finding the global minimizer of a linearly constrained problem," Computational Optimization and Applications, Springer, vol. 81(1), pages 309-336, January.
    16. S. Lucidi & F. Rinaldi, 2010. "Exact Penalty Functions for Nonlinear Integer Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 479-488, June.
    17. Phan, Dzung T. & Zhu, Yada, 2015. "Multi-stage optimization for periodic inspection planning of geo-distributed infrastructure systems," European Journal of Operational Research, Elsevier, vol. 245(3), pages 797-804.
    18. Rogeau, A. & Girard, R. & Abdelouadoud, Y. & Thorel, M. & Kariniotakis, G., 2020. "Joint optimization of building-envelope and heating-system retrofits at territory scale to enhance decision-aiding," Applied Energy, Elsevier, vol. 264(C).
    19. Marianna De Santis & Francesco Rinaldi, 2010. "Continuous reformulations for zero-one programming problems," DIS Technical Reports 2010-16, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:61:y:2015:i:1:p:101-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.